File size: 5,106 Bytes
38fd181
 
da7dbd0
38fd181
da7dbd0
 
 
38fd181
 
 
 
 
 
da7dbd0
 
38fd181
 
 
 
 
 
 
 
 
 
da7dbd0
 
 
 
38fd181
 
 
 
 
 
 
da7dbd0
 
 
 
 
 
 
 
 
38fd181
da7dbd0
 
38fd181
da7dbd0
 
38fd181
da7dbd0
 
 
 
 
 
 
 
 
38fd181
da7dbd0
 
 
 
 
38fd181
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
 
 
 
38fd181
da7dbd0
 
 
 
 
 
 
 
 
 
38fd181
 
da7dbd0
 
 
 
38fd181
da7dbd0
 
 
 
 
 
 
 
 
38fd181
 
da7dbd0
 
38fd181
da7dbd0
 
 
 
38fd181
 
 
 
da7dbd0
38fd181
da7dbd0
 
 
38fd181
da7dbd0
38fd181
 
 
 
da7dbd0
 
 
 
 
 
38fd181
 
 
 
 
 
 
 
da7dbd0
 
 
 
 
 
 
 
 
 
a6b0abd
da7dbd0
 
 
38fd181
da7dbd0
 
 
38fd181
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import logging

import pytorch_lightning as pl
import timm
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from sklearn.metrics import roc_auc_score
from torchmetrics import (
    Accuracy,
    Recall,
)
from torchvision.transforms import v2

logging.basicConfig(
    filename="training.log",
    filemode="w",
    level=logging.INFO,
    force=True,
)
CHECKPOINT = (
    "models/image_classifier/image-classifier-step=8008-val_loss=0.11.ckpt"
)


class ImageClassifier(pl.LightningModule):
    def __init__(self, lmd=0):
        super().__init__()
        self.model = timm.create_model(
            "resnet50",
            pretrained=True,
            num_classes=1,
        )
        self.accuracy = Accuracy(task="binary", threshold=0.5)
        self.recall = Recall(task="binary", threshold=0.5)
        self.validation_outputs = []
        self.lmd = lmd

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch):
        images, labels, _ = batch
        outputs = self.forward(images).squeeze()

        print(f"Shape of outputs (training): {outputs.shape}")
        print(f"Shape of labels (training): {labels.shape}")

        loss = F.binary_cross_entropy_with_logits(outputs, labels.float())
        logging.info(f"Training Step - ERM loss: {loss.item()}")
        loss += self.lmd * (outputs**2).mean()  # SD loss penalty
        logging.info(f"Training Step - SD loss: {loss.item()}")
        return loss

    def validation_step(self, batch):
        images, labels, _ = batch
        outputs = self.forward(images).squeeze()

        if outputs.shape == torch.Size([]):
            return

        print(f"Shape of outputs (validation): {outputs.shape}")
        print(f"Shape of labels (validation): {labels.shape}")

        loss = F.binary_cross_entropy_with_logits(outputs, labels.float())
        preds = torch.sigmoid(outputs)
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)
        self.log(
            "val_acc",
            self.accuracy(preds, labels.int()),
            prog_bar=True,
            sync_dist=True,
        )
        self.log(
            "val_recall",
            self.recall(preds, labels.int()),
            prog_bar=True,
            sync_dist=True,
        )
        output = {"val_loss": loss, "preds": preds, "labels": labels}
        self.validation_outputs.append(output)
        logging.info(f"Validation Step - Batch loss: {loss.item()}")
        return output

    def predict_step(self, batch):
        images, label, domain = batch
        outputs = self.forward(images).squeeze()
        preds = torch.sigmoid(outputs)
        return preds, label, domain

    def on_validation_epoch_end(self):
        if not self.validation_outputs:
            logging.warning("No outputs in validation step to process")
            return
        preds = torch.cat([x["preds"] for x in self.validation_outputs])
        labels = torch.cat([x["labels"] for x in self.validation_outputs])
        if labels.unique().size(0) == 1:
            logging.warning("Only one class in validation step")
            return
        auc_score = roc_auc_score(labels.cpu(), preds.cpu())
        self.log("val_auc", auc_score, prog_bar=True, sync_dist=True)
        logging.info(f"Validation Epoch End - AUC score: {auc_score}")
        self.validation_outputs = []

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0005)
        return optimizer


def load_image(image_path, transform=None):
    image = Image.open(image_path).convert("RGB")

    if transform:
        image = transform(image)

    return image


def predict_single_image(image_path, model, transform=None):
    image = load_image(image_path, transform)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model.to(device)

    image = image.to(device)

    model.eval()

    with torch.no_grad():
        image = image.unsqueeze(0)
        output = model(image).squeeze()
        prediction = torch.sigmoid(output).item()

    return prediction


def image_generation_detection(image_path):
    model = ImageClassifier.load_from_checkpoint(CHECKPOINT)

    transform = v2.Compose(
        [
            transforms.ToTensor(),
            v2.CenterCrop((256, 256)),
        ],
    )

    prediction = predict_single_image(image_path, model, transform)

    result = ""
    if prediction <= 0.2:
        result += "Most likely human"
        image_prediction_label = "HUMAN"
    else:
        result += "Most likely machine"
        image_prediction_label = "MACHINE"
    image_confidence = min(1, 0.5 + abs(prediction - 0.2))
    result += f" with confidence = {round(image_confidence * 100, 2)}%"
    # image_confidence = round(image_confidence * 100, 2)
    return image_prediction_label, image_confidence


if __name__ == "__main__":
    image_path = "path_to_your_image.jpg"  # Replace with your image path
    image_prediction_label, image_confidence = image_generation_detection(
        image_path,
    )