Spaces:
Sleeping
Sleeping
File size: 2,449 Bytes
0827f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# Download necessary NLTK data files
"""
Author: Khanh Phan
Date: 2024-12-04
"""
import os
import nltk
import openai
import torch
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
SEARCH_ENGINE_ID = os.getenv("SEARCH_ENGINE_ID")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
# GPT Model
GPT_ENTITY_MODEL = "o1-mini" # "gpt-4o-mini" or "o1-mini"
GPT_PARAPHRASE_MODELS = ["gpt-4o", "gpt-4o-mini"]
AZUREOPENAI_CLIENT = openai.AzureOpenAI(
api_version=AZURE_OPENAI_API_VERSION, # AZURE_OPENAI_API_VERSION,
api_key=AZURE_OPENAI_API_KEY,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
# Download the resources
nltk.download("punkt", quiet=True) # Sentence tokenization
nltk.download("punkt_tab", quiet=True) # Tokenization with tab-separated data
nltk.download("stopwords", quiet=True) # A list of stop words
STOPWORDS_LANG = "english"
# Load PARAPHASE_MODEL
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PARAPHRASE_MODEL = SentenceTransformer("paraphrase-MiniLM-L6-v2")
PARAPHRASE_MODEL.to(DEVICE)
# Model to detect AI-generated text
AI_TEXT_DECTECTION_MODEL = "TrustSafeAI/RADAR-Vicuna-7B"
# Thresholds
PARAPHRASE_THRESHOLD_HUMAN = 0.963
PARAPHRASE_THRESHOLD_MACHINE = 0.8
PARAPHRASE_THRESHOLD = 0.8
MIN_SAME_SENTENCE_LEN = 6
MIN_PHRASE_SENTENCE_LEN = 10
MIN_RATIO_PARAPHRASE_NUM = 0.5
MAX_CHAR_SIZE = 30000
# Number of top URLs per search
TOP_URLS_PER_SEARCH = 3
# Search parameters
GOOGLE_ENDPOINT_URL = "https://www.googleapis.com/customsearch/v1"
TOP_SEARCH_RESUTLS = 10
CHUNK_SIZE = 32 # words
NUM_CHUNKS = 3 # number of chunks to search
NUM_FREQUENT_WORDS = 32 # number of top words to return
NUM_KEYWORDS = 5 # number of keywords to return
# Labels
MODEL_HUMAN_LABEL = {AI_TEXT_DECTECTION_MODEL: "Human"}
HUMAN = "HUMAN"
MACHINE = "MACHINE"
UNKNOWN = "UNKNOWN"
PARAPHRASE = "PARAPHRASE"
NON_PARAPHRASE = "NON_PARAPHRASE"
# Entity color
"""
factor > 1: Lightens the color.
factor = 1: Leaves the color unchanged.
factor < 1: Darkens the color.
factor = 0: Black.
"""
ENTITY_LIGHTEN_COLOR = 2.2
ENTITY_DARKEN_COLOR = 0.7
ENTITY_SATURATION = 0.65 # Saturation: color's intensity (vividness).
ENTITY_BRIGHTNESS = 0.75 # color's brightness.
|