File size: 4,455 Bytes
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# %%
import traceback
from typing import List

import numpy as np
import torch
import torch.nn as nn
from transformers import (
    BartForConditionalGeneration,
    BartTokenizer,
)


class BARTScorer:
    def __init__(
        self,
        device="cuda:0",
        max_length=1024,
        checkpoint="facebook/bart-large-cnn",
    ):
        # Set up model
        self.device = device
        self.max_length = max_length
        self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
        self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
        self.model.eval()
        self.model.to(device)

        # Set up loss
        self.loss_fct = nn.NLLLoss(
            reduction="none",
            ignore_index=self.model.config.pad_token_id,
        )
        self.lsm = nn.LogSoftmax(dim=1)

    def load(self, path=None):
        """Load model from paraphrase finetuning"""
        if path is None:
            path = "./bart.pth"

        self.model.load_state_dict(torch.load(path, map_location=self.device))

    def score(self, srcs, tgts, batch_size=16):
        """Score a batch of examples"""
        score_list = []
        for i in range(0, len(srcs), batch_size):
            src_list = srcs[i : i + batch_size]
            tgt_list = tgts[i : i + batch_size]
            try:
                with torch.no_grad():
                    encoded_src = self.tokenizer(
                        src_list,
                        max_length=self.max_length,
                        truncation=True,
                        padding=True,
                        return_tensors="pt",
                    )
                    encoded_tgt = self.tokenizer(
                        tgt_list,
                        max_length=self.max_length,
                        truncation=True,
                        padding=True,
                        return_tensors="pt",
                    )
                    src_tokens = encoded_src["input_ids"].to(self.device)
                    src_mask = encoded_src["attention_mask"].to(self.device)

                    tgt_tokens = encoded_tgt["input_ids"].to(self.device)
                    tgt_mask = encoded_tgt["attention_mask"]
                    tgt_len = tgt_mask.sum(dim=1).to(self.device)

                    output = self.model(
                        input_ids=src_tokens,
                        attention_mask=src_mask,
                        labels=tgt_tokens,
                    )
                    logits = output.logits.view(
                        -1,
                        self.model.config.vocab_size,
                    )
                    loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
                    loss = loss.view(tgt_tokens.shape[0], -1)
                    loss = loss.sum(dim=1) / tgt_len
                    curr_score_list = [-x.item() for x in loss]
                    score_list += curr_score_list

            except RuntimeError:
                traceback.print_exc()
                print(f"source: {src_list}")
                print(f"target: {tgt_list}")
                exit(0)
        return score_list

    def multi_ref_score(
        self,
        srcs,
        tgts: List[List[str]],
        agg="mean",
        batch_size=4,
    ):
        # Assert we have the same number of references
        ref_nums = [len(x) for x in tgts]
        if len(set(ref_nums)) > 1:
            raise Exception(
                "You have different number of references per test sample.",
            )

        ref_num = len(tgts[0])
        score_matrix = []
        for i in range(ref_num):
            curr_tgts = [x[i] for x in tgts]
            scores = self.score(srcs, curr_tgts, batch_size)
            score_matrix.append(scores)
        if agg == "mean":
            score_list = np.mean(score_matrix, axis=0)
        elif agg == "max":
            score_list = np.max(score_matrix, axis=0)
        else:
            raise NotImplementedError
        return list(score_list)

    def test(self, batch_size=3):
        """Test"""
        src_list = [
            "This is a very good idea. Although simple, but very insightful.",
            "Can I take a look?",
            "Do not trust him, he is a liar.",
        ]

        tgt_list = [
            "That's stupid.",
            "What's the problem?",
            "He is trustworthy.",
        ]

        print(self.score(src_list, tgt_list, batch_size))