Spaces:
Sleeping
Sleeping
File size: 15,059 Bytes
22e1b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import csv
import logging
import os
import random
import nltk
import numpy as np
import pandas as pd
from config import ( # LOG_FILE,
API_ERROR,
IGNORE_BY_API_ERROR,
SEED,
)
from datasets import load_dataset
def print_and_log(message: str):
# TODO: redefine logging
"""
Log message.
Args:
message (str): The message to be printed and logged.
"""
logging.info(message)
def write_to_file(filename: str, content: str):
"""
Writes the given content to a specified file.
Args:
filename (str): The path to the file to write content.
content (str): The content to be written.
"""
print(content)
with open(filename, "a+", encoding="utf-8") as file:
file.write(content)
def write_new_data(
output_file: str,
current_data: dict,
column_names: list,
) -> None:
"""
Writes a new row of data to a CSV file.
Args:
output_file (str): The path to the output CSV file.
current_data (dict): A dictionary containing the data to be written.
column_names (list): A list of column names in the desired order.
Returns:
None
"""
# Extract data in the specified order based on column names
data_row = [current_data[column] for column in column_names]
# Write the data row to the CSV file
write_to_csv(output_file, data_row)
def write_to_csv(filename: str, row_data: list) -> None:
"""
Appends a row of data to a CSV file.
Args:
filename (str): The name of the CSV file.
row_data: A list of values to be written as a row.
Returns:
None
"""
# Open the CSV file in append mode, creating it if it doesn't exist
with open(filename, "a+", encoding="UTF8", newline="") as file:
writer = csv.writer(file)
writer.writerow(row_data)
def count_csv_lines(filename: str) -> int:
"""Counts the number of lines in a CSV file, excluding the header row.
Args:
filename (str): The path to the CSV file.
Returns:
int: The number of lines in the CSV file, excluding the header row.
"""
file_data = pd.read_csv(filename, sep=",").values
return len(file_data)
def read_csv_data(input_file: str) -> np.ndarray:
"""
Reads data from a specified CSV file.
Args:
file_path (str): The path to the CSV file.
Returns:
numpy.ndarray: The data from the CSV file.
"""
file_data = pd.read_csv(
input_file,
dtype="string",
keep_default_na=False,
sep=",",
).values
return file_data
def get_column(input_file: str, column_name: str) -> np.ndarray:
"""
Retrieves a specific column from a CSV file as a NumPy array.
Args:
input_file (str): The path to the CSV file.
column_name (str): The name of the column to extract.
Returns:
np.ndarray: Values from the specified column.
"""
# Read CSV, preserving string data types and handling missing values
df = pd.read_csv(
input_file,
dtype="string",
keep_default_na=False,
sep=",",
)
# Extract the specified column as a NumPy array
column_data = df[column_name].values
return column_data
def generate_column_names(categories: list) -> list:
"""
Generates column names for a pairwise comparison matrix.
Args:
categories (list): A list of categories.
Returns:
list: A list of column names,
including a 'human' column and pairwise combinations.
"""
column_names = ["human"]
# Add individual category names as column names
column_names.extend(categories)
# Add pairwise combinations of categories as column names
for i in categories:
for j in categories:
column_names.append(f"{i}_{j}")
# TODO: improve?
# for i in range(len(categories)):
# for j in range(i + 1, len(categories)):
# column_names.append(f"{categories[i]}_{categories[j]}")
return column_names
def normalize_text(input_text: str) -> str:
"""
Normalizes the given text by removing unnecessary characters and
formatting it for better readability.
Args:
input_text (str): The input text to be normalized.
Returns:
The normalized text.
This function performs the following transformations:
1. Strips leading and trailing whitespace
2. Removes double asterisks (`**`)
3. Replaces newlines with spaces
4. Removes extra spaces
"""
processed_text = input_text.strip()
processed_text = processed_text.replace("**", "")
processed_text = processed_text.replace("\n", " ")
processed_text = processed_text.replace(" ", " ") # Remove extra spaces
# TODO: what if 3 or more spaces
return processed_text
def refine_candidate_text(input_text: str, candidate_text: str) -> str:
# TODO: how different with processing text
"""
Removes specific surrounding marks from the candidate text if they are
present in the input text with an excess of exactly two occurrences.
Args:
input_text (str): The original text.
candidate (str): The candidate text to be refined.
Returns:
str: The refined candidate text.
"""
# Create a copy of the candidate string and strip whitespace
refined_candidate = candidate_text.strip()
# Iterate through each mark
for mark in ["```", "'", '"']:
# Count occurrences of the mark in input_text and refined_candidate
count_input_text = input_text.count(mark)
count_refined_candidate = refined_candidate.count(mark)
# Check if the mark should be stripped
if (
count_refined_candidate == count_input_text + 2
and refined_candidate.startswith(mark)
and refined_candidate.endswith(mark)
):
# Strip the mark from both ends of the refined_candidate
refined_candidate = refined_candidate.strip(mark)
return refined_candidate
def generate_file_name(
existing_data_file: str,
existing_kinds: list,
new_kinds: list,
) -> str:
"""
Generates a new file name based on the path of an existing data file and a
combination of existing and new kinds.
Args:
existing_data_file (str): The path to the existing data file.
existing_kinds (list): A list of existing kinds.
new_kinds (list): A list of new kinds.
Returns:
str: The generated file name with the full path.
"""
# Combine existing and new kinds into a single list
combined_kinds = existing_kinds + new_kinds
# Get the directory path of the existing data file
directory_path = os.path.dirname(existing_data_file)
# Create a new file name by joining the kinds with underscores and adding
# a suffix
# TODO: move to config file
new_file_name = "_".join(combined_kinds) + "_with_best_similarity.csv"
# Combine the directory path with the new file name to get the full output
# file path
output_file_path = os.path.join(directory_path, new_file_name)
return output_file_path
def shuffle(data: list[list], seed: int) -> None:
"""
Shuffles the elements within each sublist of the given data structure.
Args:
data (list of lists): The array containing sublists to shuffle.
seed (int): The seed value for the random number generator.
Returns:
None
"""
for sublist in data:
random.Random(seed).shuffle(sublist)
def generate_human_with_shuffle(
dataset_name: str,
column_name: str,
num_samples: int,
output_file: str,
) -> None:
"""
Generates a shuffled list of sentences from the dataset and writes them to
a CSV file.
Args:
dataset_name (str): The name of the dataset to load.
column_name (str): The column name to extract sentences from.
num_samples (int): The number of samples to process.
output_file (str): The path to the output CSV file.
Returns:
None
"""
# Load the dataset
dataset = load_dataset(dataset_name)
data = dataset["train"]
lines = []
# Tokenize sentences and add to the lines list
for sample in data:
nltk_tokens = nltk.sent_tokenize(sample[column_name])
lines.extend(nltk_tokens)
# Filter out empty lines
filtered_lines = [line for line in lines if line != ""]
lines = filtered_lines
# Shuffle the lines
shuffle([lines], seed=SEED)
# Ensure the output file exists and write the header if it doesn't
if not os.path.exists(output_file):
header = ["human"]
write_to_csv(output_file, header)
# Get the number of lines already processed in the output file
number_of_processed_lines = count_csv_lines(output_file)
# Print the initial lines to be processed
print(f"Lines before processing: {lines[:num_samples]}")
# Slice the lines list to get the unprocessed lines
lines = lines[number_of_processed_lines:num_samples]
# Print the lines after slicing
print(f"Lines after slicing: {lines}")
# Process each line and write to the output file
for index, human in enumerate(lines):
normalized_text = normalize_text(human)
output_data = [normalized_text]
write_to_csv(output_file, output_data)
print(
f"Processed {index + 1} / {len(lines)};\
Total processed:\
{number_of_processed_lines + index + 1} / {num_samples}",
)
def split_data(data: list, train_ratio: float) -> list[list, list]:
"""
Splits a dataset into training and testing sets.
Args:
data (list): The input dataset.
train_ratio (float): The proportion of data to use for training.
Returns:
The training and testing sets.
"""
# Calculate the number of samples for training
train_size = int(len(data) * train_ratio)
# Split the data into training and testing sets
train_data = data[:train_size]
test_data = data[train_size:]
return train_data, test_data
def combine_text_with_BERT_format(text_list: list[str]) -> str:
"""
Formats a list of texts into a single string suitable for BERT input.
Args:
text_list (list[str]): A list of text strings.
Returns:
str: A single string formatted with BERT's special tokens.
"""
# TODO: simplify this function
# combined_text = f"<s>{text_list[0]}</s>"
# for i in range(1, len(text_list)):
# combined_text += f"</s>{text_list[i]}</s>"
# return combined_text
formatted_text = "<s>" + "</s><s>".join(text_list) + "</s>"
return formatted_text
def check_api_error(data: list):
"""
Checks if the given data contains an API error or an indication to ignore
an API error.
Args:
data (list): A list of items to check.
Returns:
bool: True if an API error or ignore indication is found,
False otherwise.
"""
for item in data:
# Check for API error indicators
if item in (API_ERROR, IGNORE_BY_API_ERROR):
return True # Return True if at least an error indicator is found
return False # Return False if no error indicators are found
def calculate_required_models(num_columns: int) -> int:
"""
Calculates the minimum number of models required to generate the specified number of columns.
Args:
num_columns (int): The total number of columns to generate.
Returns:
int: The minimum number of models required.
Raises:
ValueError: If the number of columns cannot be achieved with the current model configuration.
"""
num_models = 0
count_human = 1 # Initial count representing human input
# TODO: simplify this function
while True:
count_single = num_models # Single model count
count_pair = num_models * num_models # Pair model count
total_count = count_human + count_single + count_pair
if total_count == num_columns:
return num_models
elif total_count > num_columns:
raise Exception(
"Cannot calculate the number of models to match the number of columns", # noqa: E501
)
num_models += 1
def parse_multimodal_data(multimodel_csv_file: list) -> list:
"""
Parses multimodal data from a CSV file into a structured format.
Args:
multimodel_csv_file (str): Path to the CSV file.
Returns:
list: A list of dictionaries, each containing 'human', 'single', and
'pair' keys.
Raises:
Exception: If there is an error in reading the CSV file or processing
the data.
"""
# TODO: simplify this function
# Read CSV data into a list of lists
input_data = read_csv_data(multimodel_csv_file)
# Initialize the result list
structured_data = []
# Calculate the number of models based on the number of columns in the first row # noqa: E501
num_models = calculate_required_models(len(input_data[0]))
# Process each row in the input data
for row in input_data:
row_data = {}
index = 0
# Extract human data
row_data["human"] = row[index]
index += 1
# Extract single model data
single_model_data = []
for _ in range(num_models):
single_model_data.append(row[index])
index += 1
row_data["single"] = single_model_data
# Extract pair model data
pair_model_data = []
for _ in range(num_models):
sub_pair_data = []
for _ in range(num_models):
sub_pair_data.append(row[index])
index += 1
pair_model_data.append(sub_pair_data)
row_data["pair"] = pair_model_data
# Append the structured row data to the result list
structured_data.append(row_data)
return structured_data
def check_error(data_item: dict) -> bool:
"""
Checks if the given data item contains any API errors.
An API error is indicated by a specific error message
or code within the text.
Args:
data_item (dict): A dictionary containing 'human', 'single',
and 'pair' fields.
Returns:
bool: True if an API error is found, otherwise False.
"""
# Check for API error in the 'human' field
if check_api_error(data_item["human"]):
return True
# Check for API error in the 'single' model data
for single_text in data_item["single"]:
if check_api_error(single_text):
return True
# Get the number of models from the 'single' model data
num_models = len(data_item["single"])
# Check for API error in the 'pair' model data
for i in range(num_models):
for j in range(num_models):
if check_api_error(data_item["pair"][i][j]):
return True
# No errors found
return False
|