File size: 11,137 Bytes
22e1b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os

from config import (
    CHATGPT,
    GEMINI,
    GEMINI_MODEL,
    IS_OUTPUT_NORMALIZATION,
    MODEL_PATHS,
    OPENAI_MODEL,
    TEMPERATURE,
    TOGETHER_API_KEY,
    TOGETHER_PATH,
)
from evaluation import extract_by_best_similarity
from openai import OpenAI
from utils import (
    generate_column_names,
    generate_file_name,
    get_column,
    normalize_text,
    print_and_log,
    read_csv_data,
    write_new_data,
    write_to_csv,
)


def abstract_proofread(model_path, temperature, base_url, api_key, prompt):
    """
    Function to proofread an abstract using an AI language model.

    Parameters:
    model_path (str): The path or identifier of the AI model to use.
    temperature (float): Sampling temperature for the model's output.
    base_url (str): The base URL for the API endpoint.
    api_key (str): The API key for authentication.
    prompt (str): The text prompt to provide to the AI for proofreading.

    Returns:
    str: The proofread abstract generated by the AI model.
    """
    # Initialize the AI client with the provided API key and base URL
    ai_client = OpenAI(api_key=api_key, base_url=base_url)

    # Create a chat completion request with the system message and user prompt
    chat_completion = ai_client.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": "You are an AI assistant",
            },
            {
                "role": "user",
                "content": prompt,
            },
        ],
        model=model_path,
        max_tokens=1024,
        temperature=temperature,
    )

    # Return the content of the first choice's message
    return chat_completion.choices[0].message.content


def proofread_by_model_name(model_name, input_text, normalize_output):
    """
    Proofreads the given input text using the specified model.

    Args:
        model_name (str): The name of the model to use for proofreading.
        input_text (str): The text to be proofread.
        normalize_output (bool): Whether to normalize the output or not.

    Returns:
        str: The proofread text.
    """
    # Constants for API access
    base_url = TOGETHER_PATH
    api_key = TOGETHER_API_KEY
    temperature = TEMPERATURE

    # Retrieve the model path from the dictionary
    if model_name in MODEL_PATHS:
        model_path = MODEL_PATHS[model_name]
    else:
        raise ValueError("Model name not found in the dictionary.")

    # Formulate the prompt for the model
    prompt = f"Proofreading for the text: ```{input_text}```"

    # Apply output normalization if required
    if normalize_output:
        prompt = output_normalization(prompt)

    # Debugging: Print the prompt
    print(f"Prompt: {prompt}")

    # Call the abstract proofreading function with the prepared parameters
    return abstract_proofread(
        model_path,
        temperature,
        base_url,
        api_key,
        prompt,
    )


def gemini_proofread(input_text, normalize_output):
    """
    Proofreads the given text using the GEMINI_MODEL.

    Parameters:
    input_text (str): The text to be proofread.
    normalize_output (bool): Flag indicating whether to normalize the output.

    Returns:
    str: The proofread text.
    """
    prompt = f"Proofreading for the text: ```{input_text}```"
    if normalize_output:
        prompt = output_normalization(prompt)
    response = GEMINI_MODEL.generate_content(prompt)
    return response.text


def chatGPT_proofread(input_text, normalize_output):
    """
    Proofreads the given text using the chat_model.

    Parameters:
    input_text (str): The text to be proofread.
    normalize_output (bool): Flag indicating whether to normalize the output.

    Returns:
    str: The proofread text.
    """
    prompt = f"Proofreading for the text: ```{input_text}```"
    if normalize_output:
        prompt = output_normalization(prompt)

    print(f"Starting API call with prompt: {prompt}")
    result = OPENAI_MODEL.predict(prompt)
    print(f"Ending API call with prompt: {prompt}")

    return result


def output_normalization(prompt):
    """
    Normalizes the output by appending a specific instruction to the prompt.

    Parameters:
    prompt (str): The initial prompt.

    Returns:
    str: The modified prompt.
    """
    return (
        prompt
        + " Please only output the proofread text without any explanation."
    )


def proofread_with_best_similarity(input_text, model_kind):
    """
    Proofreads the input text using the specified model and extracts the
        best-corrected text based on similarity.

    Args:
        input_text (str): The original text to be proofread.
        model_kind (str): The kind of model to use for proofreading
            (e.g., CHATGPT, GEMINI).

    Returns:
        tuple: A tuple containing the raw proofread text and the
            best-corrected text.
    """

    # Normalize the input text
    normalized_input_text = normalize_text(input_text)
    print_and_log(f"INPUT = {normalized_input_text}")

    result_text = ""
    raw_text = ""

    for i in range(
        1,
    ):  # Loop is redundant as it runs only once;
        # consider removing if unnecessary
        # Select the proofreading model based on model_kind
        if model_kind == CHATGPT:
            raw_text = chatGPT_proofread(
                normalized_input_text,
                normalize_output=IS_OUTPUT_NORMALIZATION,
            )
        elif model_kind == GEMINI:
            raw_text = gemini_proofread(
                normalized_input_text,
                normalize_output=IS_OUTPUT_NORMALIZATION,
            )
        else:
            raw_text = proofread_by_model_name(
                model_kind,
                normalized_input_text,
                normalize_output=IS_OUTPUT_NORMALIZATION,
            )

        # Extract the best candidate text based on similarity
        result_text = extract_by_best_similarity(
            normalized_input_text,
            raw_text,
        )

        # Log the raw and result texts
        print_and_log(f"RAW_{i} = {raw_text}")
        print
        # Normalize the result text
        result_text = normalize_text(result_text)

        # If a valid result is obtained, return it
        if result_text != "":
            return raw_text, result_text

    # Return the raw and result texts
    return raw_text, result_text


def generate_new_data_with_best_similarity(
    existing_data_file,
    existing_kinds,
    new_kinds,
):
    """
    Generates new data with the best similarity based on existing and new
        kinds, and writes the results to a CSV file.

    Args:
        existing_data_file (str): The path to the existing data file.
        existing_kinds (list): A list of existing kinds.
        new_kinds (list): A list of new kinds.

    Returns:
        None
    """

    # Combine existing and new kinds into a single list
    all_kinds = existing_kinds + new_kinds

    # Generate column names for the CSV file
    column_names = generate_column_names(all_kinds)

    # Generate column names for existing kinds
    existing_column_names = generate_column_names(existing_kinds)

    # Generate the output file name
    output_file = generate_file_name(
        existing_data_file,
        existing_kinds,
        new_kinds,
    )

    # Create the output file with column names if it doesn't exist
    if not os.path.exists(output_file):
        write_to_csv(output_file, column_names)

    # Read existing data from the file
    existing_data = {
        kind: get_column(existing_data_file, kind)
        for kind in existing_column_names
    }

    # Read input data from the output file
    input_data = read_csv_data(output_file)
    start_index = len(input_data)
    print(f"start_index = {start_index}")

    num_rows = len(existing_data["human"])
    global_generate_set = []
    global_reuse = []

    for index in range(start_index, num_rows):
        # Initialize generation and reuse sets
        generate_set = []
        reuse_set = []

        # Prepare the current generation dictionary
        current_generation = {
            kind: existing_data[kind][index] for kind in existing_column_names
        }
        print(f"current_generation before generation = {current_generation}")

        human_text = current_generation["human"]

        # Generate new kinds based on human text
        for kind in new_kinds:
            _, generated_text = proofread_with_best_similarity(
                human_text,
                kind,
            )
            current_generation[kind] = generated_text
            generate_set.append(kind)

        print(f"current_generation after generate one = {current_generation}")

        # Generate combinations of kinds
        for first_kind in all_kinds:
            for second_kind in all_kinds:
                combination_name = f"{first_kind}_{second_kind}"

                if combination_name not in current_generation:
                    if (
                        first_kind in current_generation
                        and current_generation[first_kind] == human_text
                    ):
                        generated_text = current_generation[second_kind]
                        reuse_set.append(
                            f"{combination_name} from {second_kind}",
                        )
                    else:
                        is_need_generation = True
                        for first_kind_2 in all_kinds:
                            if (
                                first_kind != first_kind_2
                                and current_generation[first_kind]
                                == current_generation[first_kind_2]
                            ):
                                combination_name_2 = (
                                    f"{first_kind_2}_{second_kind}"
                                )
                                if combination_name_2 in current_generation:
                                    generated_text = current_generation[
                                        combination_name_2
                                    ]
                                    reuse_set.append(
                                        f"{combination_name} from {combination_name_2}",  # noqa: E501
                                    )
                                    is_need_generation = False
                                    break
                        if is_need_generation:
                            _, generated_text = proofread_with_best_similarity(
                                current_generation[first_kind],
                                second_kind,
                            )
                            generate_set.append(f"{first_kind}_{second_kind}")

                    current_generation[combination_name] = generated_text

        # Write the current generation to the output file
        write_new_data(output_file, current_generation, column_names)

        # Update global sets
        global_generate_set.append(generate_set)
        global_reuse