File size: 15,085 Bytes
da7dbd0
d952fbe
 
da7dbd0
 
d952fbe
da7dbd0
1ce1659
 
badcb49
da7dbd0
 
 
 
 
 
d952fbe
 
 
 
 
 
da7dbd0
 
 
d952fbe
 
 
 
da7dbd0
 
 
 
 
 
1ce1659
da7dbd0
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
 
 
 
d952fbe
 
 
da7dbd0
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
 
 
da7dbd0
 
d952fbe
da7dbd0
d952fbe
 
 
da7dbd0
 
 
 
 
d952fbe
 
 
 
da7dbd0
d952fbe
da7dbd0
 
 
d952fbe
 
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
d952fbe
da7dbd0
 
 
d952fbe
 
 
 
da7dbd0
 
 
d952fbe
da7dbd0
 
d952fbe
 
1ce1659
da7dbd0
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from difflib import SequenceMatcher
import difflib
from src.application.highlight_text import generate_color
from src.application.image.image_detection import detect_image_by_ai_model, detect_image_by_reverse_search, detect_image_from_news_image
from src.application.text.model_detection import detect_text_by_ai_model
from src.application.text.preprocessing import split_into_sentences
from src.application.text.search_detection import check_human, detect_text_by_relative_search


class NewsVerification():
    def __init__(self):
        self.news_text = ""
        self.news_title = ""
        self.news_content = ""
        self.news_image = ""
        
        self.text_prediction_label:list[str] = []
        self.text_prediction_score:list[float] = []
        self.text_referent_url:list[str] = []
        self.image_prediction_label:list[str] = []
        self.image_prediction_score:list[str] = []
        self.image_referent_url:list[str] = []
        self.news_prediction_label = ""
        self.news_prediction_score = -1
        
        self.found_img_url:list[str] = []
        self.aligned_sentences:list[dict] = []
        self.is_paraphrased:list[bool] = []
        self.analyzed_table:list[list] = []
        
    def load_news(self, news_title, news_content, news_image):
        self.news_text = news_title + "\n\n" + news_content
        self.news_title = news_title
        self.news_content = news_content
        self.news_image = news_image

    def determine_text_origin(self):
        """
        Determines the origin of the given text based on paraphrasing detection and human authorship analysis.

        Args:
            text: The input text to be analyzed.

        Returns:
            str: The predicted origin of the text: 
                - "HUMAN": If the text is likely written by a human.
                - "MACHINE": If the text is likely generated by a machine.
        """
        print("CHECK TEXT:")
        print("\tFrom search engine:")
        # Classify by search engine
        input_sentences = split_into_sentences(self.news_text)
        for sentence in input_sentences:
            paraphrase, text_url, aligned_sentence, img_urls = detect_text_by_relative_search(sentence)
        
            text_prediction_label = "UNKNOWN"
            if paraphrase is False:
                # Classify text by AI model
                print("\tFrom AI model:")
                text_prediction_label, text_prediction_score = detect_text_by_ai_model(sentence)
                if aligned_sentence == []:
                    aligned_sentence = {
                        "input_sentence": sentence,
                        "matched_sentence": "",
                        "similarity": text_prediction_score,
                        "is_paraphrase_sentence": False,
                        "url": "",
                    }
            else:
                self.found_img_url.extend(img_urls)
                text_prediction_score = aligned_sentence["similarity"]
                if check_human(aligned_sentence):
                    text_prediction_label = "HUMAN"
                else:
                    text_prediction_label = "MACHINE"
            
            print(f"\ttext_prediction_label: {text_prediction_label}\n")
            self.text_prediction_label.append(text_prediction_label)
            self.aligned_sentences.append(aligned_sentence)
            self.is_paraphrased.append(paraphrase)
            self.text_referent_url.append(text_url)
            self.text_prediction_score.append(text_prediction_score)
            paraphrase = False
            text_url = ""
            aligned_sentence = {}
            img_urls = []

    def detect_image_origin(self):
        print("CHECK IMAGE:")
        if self.news_image is None:
            self.image_prediction_label = "UNKNOWN"
            self.image_prediction_score = 0.0
            self.image_referent_url = None
            return
        
        print(f"\t: Img path: {self.news_image}")    
        matched_url, similarity = detect_image_from_news_image(self.news_image, self.found_img_url)
        if matched_url is not None:
            print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
            self.image_prediction_label = "HUMAN"
            self.image_prediction_score = similarity
            self.image_referent_url = matched_url
            return
        
        matched_url, similarity = detect_image_by_reverse_search(self.news_image)
        if matched_url is not None:
            print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
            self.image_prediction_label = "HUMAN"
            self.image_prediction_score = similarity
            self.image_referent_url = matched_url
            return
        
        detected_label, score = detect_image_by_ai_model(self.news_image)
        if detected_label:
            self.image_prediction_label = detected_label
            self.image_prediction_score = score
            self.image_referent_url = None
            return
        
        self.image_prediction_label = "UNKNOWN"
        self.image_prediction_score = 50
        self.image_referent_url = None

    def determine_news_origin(self):
        if self.text_prediction_label == "MACHINE":
            text_prediction_score = 100 - self.text_prediction_score
        elif self.text_prediction_label == "UNKNOWN":
            text_prediction_score = 50
        else:
            text_prediction_score = self.text_prediction_score
            
        if self.image_prediction_label == "MACHINE":
            image_prediction_score = 100 - self.image_prediction_score
        elif self.image_prediction_label == "UNKNOWN":
            image_prediction_score = 50
        else:
            image_prediction_score = self.image_prediction_score
        
        news_prediction_score = (text_prediction_score + image_prediction_score) / 2
        if news_prediction_score > 50:
            self.news_prediction_score = news_prediction_score
            self.news_prediction_label = "HUMAN"
        else:
            self.news_prediction_score = 100 - news_prediction_score
            self.news_prediction_label = "MACHINE"

    def generate_analysis_report(self):
        self.determine_text_origin()
        self.detect_image_origin()

    def analyze_details(self):
        self.analyzed_table = []
        # IMAGES:
        
        
        # TEXT
        for pair in self.aligned_sentences:
            print(f"pair: {pair}")
            if "input_sentence" not in pair:
                continue
            input_words, source_words, input_indexes, source_indexes = (
                self.highlight_overlap_by_word_to_list(
                    pair["input_sentence"],
                    pair["matched_sentence"],
                )
                # self.compare_sentences(
                #     pair["input_sentence"],
                #     pair["matched_sentence"],
                # )
            )
            self.analyzed_table.append(
                (input_words, source_words, input_indexes, source_indexes),
            )
        
        if len(self.analyzed_table) != 0:
            html_table = self.create_table()
        else:
            html_table = ""
        return html_table
        
    def highlight_overlap_by_word_to_list(self, text1, text2):
        """
        Return
        - list of words in text1
        - list of words in text2
        - list of index of highlight words in text 1
        - list of index of highlight words in text 2
        """
        # Tách chuỗi thành các từ (word) dựa vào khoảng trắng
        words1 = text1.split()
        words2 = text2.split()

        index1 = []
        index2 = []

        # Sử dụng SequenceMatcher để tìm các đoạn trùng lặp giữa danh sách các từ
        matcher = SequenceMatcher(None, words1, words2)
        
        highlighted_text1 = []
        highlighted_text2 = []

        # Theo dõi vị trí hiện tại trong words1 và words2
        current_pos1 = 0
        current_pos2 = 0

        # Lặp qua các đoạn so khớp
        for match in matcher.get_matching_blocks():
            start1, start2, length = match
            print(start1, start2, length)

            # Thêm các từ không trùng lặp vào (giữ nguyên)
            highlighted_text1.extend(words1[current_pos1:start1])
            highlighted_text2.extend(words2[current_pos2:start2])

            if length > 0:
                for i in range(start1, start1 + length):
                    index1.append(i)
                for i in range(start2, start2 + length):
                    index2.append(i)
                
            # Cập nhật vị trí hiện tại
            current_pos1 = start1 + length
            current_pos2 = start2 + length
        
        return words1, words2, index1, index2
    
    
    def get_text_urls(self):
        return set(self.text_referent_url)
    
    def generate_colors_list(self, set_urls):
        color_dict = {}
        num_urls = len(set_urls)
        for i in range(num_urls):
            color_dict[i] = generate_color(i, num_urls)
        
        return color_dict            

    def analyze_details_2(self):
        html_text = ""
        
        self.analyzed_table = []
        # TEXT
        # Assign unique colors to each index
        set_urls = self.get_text_urls()
        color_dict = self.generate_colors_list(set_urls)

        # position of the color in the input contents
        position = 0
        for pair in self.aligned_sentences:
            if "input_sentence" not in pair:
                continue
            common_phrases, position = self.compare_sentences(
                pair["input_sentence"],
                pair["matched_sentence"],
                position,
                color_dict["0"],  # TODO: set color
            )
            
        
        if len(self.analyzed_table) != 0:
            html_table = self.create_table()
        else:
            html_table = ""
        return html_text, html_table
        
    def compare_sentences(self, sentence_1, sentence_2, position, color):
        """
        Compares two sentences and identifies common phrases, outputting their start and end positions.

        Args:
            sentence_1: The first sentence (string).
            sentence_2: The second sentence (string).

        Returns:
            A list of dictionaries, where each dictionary represents a common phrase and contains:
                - "phrase": The common phrase (string).
                - "start_1": The starting index of the phrase in sentence_1 (int).
                - "end_1": The ending index of the phrase in sentence_1 (int).
                - "start_2": The starting index of the phrase in sentence_2 (int).
                - "end_2": The ending index of the phrase in sentence_2 (int).
            Returns an empty list if no common phrases are found.  Handles edge cases like empty strings.
        """

        if not sentence_1 or not sentence_2:  # Handle empty strings
            return []

        s = difflib.SequenceMatcher(None, sentence_1, sentence_2)
        common_phrases = []

        for block in s.get_matching_blocks():
            if block.size > 0:  # Ignore zero-length matches
                start_1 = block.a
                end_1 = block.a + block.size
                start_2 = block.b
                end_2 = block.b + block.size

                phrase = sentence_1[start_1:end_1]  # Or sentence_2[start_2:end_2], they are the same

                common_phrases.append({
                    "phrase": phrase,
                    "start_1": start_1 + position,
                    "end_1": end_1 + position,
                    "start_2": start_2,
                    "end_2": end_2,
                    "color": color,
                })
        position += len(sentence_1)
        return common_phrases, position

    def create_table(self):
        #table_rows = "\n".join([self.format_row(row) for row in self.analyzed_table])
        # loop of self.analyzed_table with index:
        rows = []
        max_length = 30  # TODO: put this in configuration
        rows.append(self.format_image_row(max_length))
        
        for index, row in enumerate(self.analyzed_table):
            formatted_row = self.format_text_row(row, index, max_length)
            rows.append(formatted_row)
        table = "\n".join(rows)
        return f"""
        <h5>Comparison between input news and source news</h5>
        <table border="1" style="width:100%; text-align:left; border-collapse:collapse;">
            <thead>
                <tr>
                    <th>Input news</th>
                    <th>Source content</th>
                    <th>Forensic</th>
                    <th>Originality</th>
                </tr>
            </thead>
            <tbody>
                {table}
            </tbody>
        </table>
        
        <style>
    """
    
    def format_text_row(self, row, index = 0, max_length=30):
        input_sentence = self.highlight_text(row[0], row[2])  # text, index of highlight words
        source_sentence = self.highlight_text(row[1], row[3])  # text, index of highlight words
        
        url = self.aligned_sentences[index]["url"] #
        short_url = self.shorten_url(url, max_length)
        source_text_url = f"""<a href="{url}">{short_url}</a>"""
        
        # short_url = self.shorten_url(self.text_referent_url[index], max_length)
        # source_text_url = f"""<a href="{self.text_referent_url[index]}">{short_url}</a>"""
        
        self.text_prediction_score[index]
        return f"""<tr><td>{input_sentence}</td><td>{source_sentence}</td><td>{self.text_prediction_label[index]}<br>({self.text_prediction_score[index]*100:.2f}%)</td><td>{source_text_url}</td></tr>"""
        
    def format_image_row(self, max_length=30):        
        # input_image = f"""<img src="{self.news_image}" width="200" height="150">"""
        print(f"self.news_image = {self.news_image}")
        source_image = f"""<img src="{self.image_referent_url}" width="200" height="150">"""
        short_url = self.shorten_url(self.image_referent_url, max_length)
        source_image_url = f"""<a href="{self.image_referent_url}">{short_url}</a>"""
        return f"""<tr><td>input image</td><td>{source_image}</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td>{source_image_url}</td></tr>"""
    
    def shorten_url(self, url, max_length=30):
        if url is None:
            return ""
        
        if len(url) > max_length:
            short_url = url[:max_length] + "..."
        else:
            short_url = url
        return short_url

    def highlight_text(self, words, indexes):
        final_words = words
        for index in indexes:
            final_words[index] = (
                f"<span style='color:#00FF00; font-weight:bold;'>{words[index]}</span>"
            )
        return " ".join(final_words)