Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,7 @@ Estructura del c贸digo:
|
|
24 |
"""
|
25 |
#from langchain.vectorstores import Chroma
|
26 |
from langchain_chroma import Chroma
|
|
|
27 |
#from chromadb.utils import embedding_functions
|
28 |
from src.preprocess import Loader
|
29 |
from src.vdb import EmbeddingGen
|
@@ -52,7 +53,7 @@ if __name__=="__main__":
|
|
52 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
53 |
embeddings = EmbeddingGen("sentence-transformers/all-MiniLM-L12-v2")
|
54 |
db = Chroma("QAMath", embedding_function=embeddings)
|
55 |
-
vectorstore = db.from_documents(textos, embeddings)
|
56 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
57 |
|
58 |
# Carga del modelo y ejecuci贸n de la interfaz
|
|
|
24 |
"""
|
25 |
#from langchain.vectorstores import Chroma
|
26 |
from langchain_chroma import Chroma
|
27 |
+
from tqdm.auto import tqdm
|
28 |
#from chromadb.utils import embedding_functions
|
29 |
from src.preprocess import Loader
|
30 |
from src.vdb import EmbeddingGen
|
|
|
53 |
# Generaci贸n de embeddings y almacenamiento en base de datos ChromaDB
|
54 |
embeddings = EmbeddingGen("sentence-transformers/all-MiniLM-L12-v2")
|
55 |
db = Chroma("QAMath", embedding_function=embeddings)
|
56 |
+
vectorstore = db.from_documents(list(tqdm(textos, desc="Procesando documentos", unit="doc")), embeddings)
|
57 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
58 |
|
59 |
# Carga del modelo y ejecuci贸n de la interfaz
|