Spaces:
Sleeping
Sleeping
Commit
·
91788b1
1
Parent(s):
d246538
deleted main.py
Browse files
app.py
CHANGED
@@ -2,21 +2,14 @@ import gradio as gr
|
|
2 |
from typing import List
|
3 |
import cv2
|
4 |
import torch
|
5 |
-
from torchvision import transforms
|
6 |
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
from pytorch_grad_cam import GradCAM
|
9 |
-
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
-
import io
|
12 |
from models import YoloV3Lightning
|
13 |
from utils import load_model_from_checkpoint
|
14 |
import utils
|
15 |
import config as cfg
|
16 |
import matplotlib.pyplot as plt
|
17 |
import matplotlib.patches as patches
|
18 |
-
from dataset import YOLODataset
|
19 |
-
from torch.utils.data import Dataset, DataLoader
|
20 |
from grad_cam import YoloGradCAM
|
21 |
|
22 |
device = torch.device('cpu')
|
|
|
2 |
from typing import List
|
3 |
import cv2
|
4 |
import torch
|
|
|
5 |
import numpy as np
|
|
|
|
|
|
|
6 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
|
|
7 |
from models import YoloV3Lightning
|
8 |
from utils import load_model_from_checkpoint
|
9 |
import utils
|
10 |
import config as cfg
|
11 |
import matplotlib.pyplot as plt
|
12 |
import matplotlib.patches as patches
|
|
|
|
|
13 |
from grad_cam import YoloGradCAM
|
14 |
|
15 |
device = torch.device('cpu')
|
main.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
from dataset import *
|
2 |
-
from models.YoloV3Lightning import *
|
3 |
-
import utils
|
4 |
-
|
5 |
-
def init(model, basic_sanity_check=True, find_max_lr=True, train=True, **kwargs):
|
6 |
-
if basic_sanity_check:
|
7 |
-
validate_dataset()
|
8 |
-
sanity_check(model)
|
9 |
-
print("Set basic_sanity_check to False to proceed")
|
10 |
-
else:
|
11 |
-
if find_max_lr:
|
12 |
-
optimizer = kwargs.get('optimizer')
|
13 |
-
criterion = kwargs.get('criterion')
|
14 |
-
train_loader = kwargs.get('train_loader')
|
15 |
-
utils.find_lr(model, optimizer, criterion, train_loader)
|
16 |
-
print("Set find_max_lr to False to proceed further")
|
17 |
-
else:
|
18 |
-
|
19 |
-
train_loader = kwargs.get('train_loader')
|
20 |
-
val_loader = kwargs.get('test_loader')
|
21 |
-
|
22 |
-
if train:
|
23 |
-
trainer = pl.Trainer(
|
24 |
-
precision=16,
|
25 |
-
max_epochs=cfg.NUM_EPOCHS,
|
26 |
-
accelerator='gpu'
|
27 |
-
)
|
28 |
-
|
29 |
-
cargs = {}
|
30 |
-
if cfg.LOAD_MODEL:
|
31 |
-
cargs = dict(ckpt_path=cfg.CHECKPOINT_FILE)
|
32 |
-
|
33 |
-
trainer.fit(model, train_loader, val_loader, **cargs)
|
34 |
-
else:
|
35 |
-
ckpt_file = kwargs.get('ckpt_file')
|
36 |
-
if ckpt_file:
|
37 |
-
checkpoint = utils.load_model_from_checkpoint(cfg.DEVICE, file_name=ckpt_file)
|
38 |
-
model.load_state_dict(checkpoint['model'], strict=False)
|
39 |
-
|
40 |
-
#-- Printing samples
|
41 |
-
model.to(cfg.DEVICE)
|
42 |
-
model.eval()
|
43 |
-
cfg.IMG_DIR = cfg.DATASET + "/images/"
|
44 |
-
cfg.LABEL_DIR = cfg.DATASET + "/labels/"
|
45 |
-
eval_dataset = YOLODataset(
|
46 |
-
cfg.DATASET + "/test.csv",
|
47 |
-
transform=cfg.test_transforms,
|
48 |
-
S=[cfg.IMAGE_SIZE // 32, cfg.IMAGE_SIZE // 16, cfg.IMAGE_SIZE // 8],
|
49 |
-
img_dir=cfg.IMG_DIR,
|
50 |
-
label_dir=cfg.LABEL_DIR,
|
51 |
-
anchors=cfg.ANCHORS,
|
52 |
-
mosaic=False
|
53 |
-
)
|
54 |
-
eval_loader = DataLoader(
|
55 |
-
dataset=eval_dataset,
|
56 |
-
batch_size=cfg.BATCH_SIZE,
|
57 |
-
num_workers=cfg.NUM_WORKERS,
|
58 |
-
pin_memory=cfg.PIN_MEMORY,
|
59 |
-
shuffle=True,
|
60 |
-
drop_last=False,
|
61 |
-
)
|
62 |
-
|
63 |
-
scaled_anchors = (
|
64 |
-
torch.tensor(cfg.ANCHORS)
|
65 |
-
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
66 |
-
)
|
67 |
-
scaled_anchors = scaled_anchors.to(cfg.DEVICE)
|
68 |
-
|
69 |
-
utils.plot_examples(model, eval_loader, 0.5, 0.6, scaled_anchors)
|
70 |
-
|
71 |
-
# -- Printing MAP
|
72 |
-
pred_boxes, true_boxes = utils.get_evaluation_bboxes(
|
73 |
-
eval_loader,
|
74 |
-
model,
|
75 |
-
iou_threshold=cfg.NMS_IOU_THRESH,
|
76 |
-
anchors=cfg.ANCHORS,
|
77 |
-
threshold=cfg.CONF_THRESHOLD,
|
78 |
-
)
|
79 |
-
mapval = utils.mean_average_precision(
|
80 |
-
pred_boxes,
|
81 |
-
true_boxes,
|
82 |
-
iou_threshold=cfg.MAP_IOU_THRESH,
|
83 |
-
box_format="midpoint",
|
84 |
-
num_classes=cfg.NUM_CLASSES,
|
85 |
-
)
|
86 |
-
print(f"MAP: {mapval.item()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|