Spaces:
Sleeping
Sleeping
Commit
·
588684f
1
Parent(s):
b81da07
Update app.py
Browse files
app.py
CHANGED
@@ -35,33 +35,6 @@ scaled_anchors = (
|
|
35 |
).to(model.device)
|
36 |
|
37 |
cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], scaled_anchors=scaled_anchors, use_cuda=False)
|
38 |
-
'''cfg.IMG_DIR = cfg.DATASET + "/images/"
|
39 |
-
cfg.LABEL_DIR = cfg.DATASET + "/labels/"
|
40 |
-
eval_dataset = YOLODataset(
|
41 |
-
cfg.DATASET + "/25examples.csv",
|
42 |
-
transform=cfg.test_transforms,
|
43 |
-
S=[cfg.IMAGE_SIZE // 32, cfg.IMAGE_SIZE // 16, cfg.IMAGE_SIZE // 8],
|
44 |
-
img_dir=cfg.IMG_DIR,
|
45 |
-
label_dir=cfg.LABEL_DIR,
|
46 |
-
anchors=cfg.ANCHORS,
|
47 |
-
mosaic=False
|
48 |
-
)
|
49 |
-
eval_loader = DataLoader(
|
50 |
-
dataset=eval_dataset,
|
51 |
-
batch_size=cfg.BATCH_SIZE,
|
52 |
-
num_workers=cfg.NUM_WORKERS,
|
53 |
-
pin_memory=cfg.PIN_MEMORY,
|
54 |
-
shuffle=True,
|
55 |
-
drop_last=False,
|
56 |
-
)
|
57 |
-
|
58 |
-
scaled_anchors = (
|
59 |
-
torch.tensor(cfg.ANCHORS)
|
60 |
-
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
61 |
-
)
|
62 |
-
scaled_anchors = scaled_anchors.to(cfg.DEVICE)
|
63 |
-
|
64 |
-
utils.plot_examples(model, eval_loader, 0.5, 0.6, scaled_anchors)'''
|
65 |
|
66 |
sample_images = [
|
67 |
['images/000001.jpg'],
|
@@ -153,11 +126,11 @@ with gr.Blocks() as app:
|
|
153 |
with gr.Row():
|
154 |
if_show_grad_cam = gr.Checkbox(value=True, label='Show Class Activation Map (What the model sees)?')
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
|
162 |
|
163 |
def show_cam_output(input):
|
|
|
35 |
).to(model.device)
|
36 |
|
37 |
cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], scaled_anchors=scaled_anchors, use_cuda=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
sample_images = [
|
40 |
['images/000001.jpg'],
|
|
|
126 |
with gr.Row():
|
127 |
if_show_grad_cam = gr.Checkbox(value=True, label='Show Class Activation Map (What the model sees)?')
|
128 |
|
129 |
+
with gr.Row(visible=True) as top_class_output:
|
130 |
+
with gr.Column(visible=True) as top_class_output:
|
131 |
+
top_class_output_img = gr.Image(interactive=False, label='Prediction Output')
|
132 |
+
with gr.Column(visible=True) as top_class_output:
|
133 |
+
grad_cam_out = gr.Image(interactive=False, visible=True, label='CAM Outcome')
|
134 |
|
135 |
|
136 |
def show_cam_output(input):
|