piyushgrover commited on
Commit
8f13c5d
·
verified ·
1 Parent(s): 701fc97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -30,7 +30,7 @@ phi_base_model = AutoModelForCausalLM.from_pretrained(
30
  from peft import PeftModel
31
  phi_new_model = "models/phi_adapter"
32
  phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
33
- phi_model = phi_model.merge_and_unload()
34
 
35
  '''compute_type = 'float32'
36
  if device != 'cpu':
@@ -134,9 +134,9 @@ def bot(history):
134
  else:
135
  if context_type == 'image':
136
  query_ids = tokenizer.encode(query)
137
- query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0)
138
  query_embeds = phi_model.get_input_embeddings()(query_ids)
139
- inputs_embeds = torch.cat([context, query_embeds], dim=1)
140
  out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
141
  bos_token_id=tokenizer.bos_token_id)
142
  response = tokenizer.decode(out[0], skip_special_tokens=True)
@@ -144,7 +144,7 @@ def bot(history):
144
  input_text = context + query
145
 
146
  input_tokens = tokenizer.encode(input_text)
147
- input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0)
148
  inputs_embeds = phi_model.get_input_embeddings()(input_ids)
149
  out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
150
  bos_token_id=tokenizer.bos_token_id)
@@ -214,12 +214,12 @@ with gr.Blocks() as app:
214
  chatbot.like(print_like_dislike, None, None)
215
  clear.click(clear_fn, None, chatbot, queue=False)
216
 
217
- aud.stop_recording(audio_file, [chatbot, aud], [chatbot], queue=False).then(
218
  bot, chatbot, chatbot, api_name="bot_response"
219
  )
220
- aud.upload(audio_file, [chatbot, aud], [chatbot], queue=False).then(
221
  bot, chatbot, chatbot, api_name="bot_response"
222
- )
223
 
224
  app.queue()
225
  app.launch()
 
30
  from peft import PeftModel
31
  phi_new_model = "models/phi_adapter"
32
  phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
33
+ phi_model = phi_model.merge_and_unload().to(device)
34
 
35
  '''compute_type = 'float32'
36
  if device != 'cpu':
 
134
  else:
135
  if context_type == 'image':
136
  query_ids = tokenizer.encode(query)
137
+ query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0).to(device)
138
  query_embeds = phi_model.get_input_embeddings()(query_ids)
139
+ inputs_embeds = torch.cat([context.to(device), query_embeds], dim=1)
140
  out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
141
  bos_token_id=tokenizer.bos_token_id)
142
  response = tokenizer.decode(out[0], skip_special_tokens=True)
 
144
  input_text = context + query
145
 
146
  input_tokens = tokenizer.encode(input_text)
147
+ input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0).to(device)
148
  inputs_embeds = phi_model.get_input_embeddings()(input_ids)
149
  out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
150
  bos_token_id=tokenizer.bos_token_id)
 
214
  chatbot.like(print_like_dislike, None, None)
215
  clear.click(clear_fn, None, chatbot, queue=False)
216
 
217
+ aud.change(audio_file, [chatbot, aud], [chatbot], queue=False).then(
218
  bot, chatbot, chatbot, api_name="bot_response"
219
  )
220
+ '''aud.upload(audio_file, [chatbot, aud], [chatbot], queue=False).then(
221
  bot, chatbot, chatbot, api_name="bot_response"
222
+ )'''
223
 
224
  app.queue()
225
  app.launch()