Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from config import VisionProjectorConfig | |
''' | |
class VisionProjector(nn.Module): | |
def __init__(self, config: VisionProjectorConfig): | |
super().__init__() | |
self.config = config | |
self.input_dim = config.input_dim | |
self.hidden_dim = config.hidden_dim | |
self.output_dim = config.output_dim | |
self.num_tokens = config.num_tokens | |
self.pre_norm = nn.LayerNorm(self.input_dim) | |
self.proj = nn.Sequential( | |
nn.GELU(), | |
nn.Linear(self.input_dim, self.num_tokens * self.output_dim) | |
) | |
def forward(self, x): | |
x = self.pre_norm(x) | |
x = self.proj(x) | |
x = x.reshape( (-1, self.num_tokens, self.output_dim) ) | |
return x | |
''' | |
class VisionProjector(nn.Module): | |
def __init__(self, config: VisionProjectorConfig): | |
super().__init__() | |
self.config = config | |
self.input_dim = config.input_dim | |
self.output_dim = config.output_dim | |
self.proj = nn.Linear(self.input_dim, self.output_dim) | |
def forward(self, x): | |
x = self.proj(x) | |
return x |