MultiModelGPT / app.py
piyushgrover's picture
Upload app.py
6cf9cf4 verified
raw
history blame
7.14 kB
import gradio as gr
import os
import time
from PIL import Image
import torch
import whisperx
from transformers import CLIPVisionModel, CLIPImageProcessor, AutoModelForCausalLM, AutoTokenizer
from models.vision_projector_model import VisionProjector
from config import VisionProjectorConfig, app_config as cfg
device = 'cuda' if torch.cuda.is_available() else 'cpu'
clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
vision_projector = VisionProjector(VisionProjectorConfig())
ckpt = torch.load(cfg['vision_projector_file'], map_location=torch.device(device))
vision_projector.load_state_dict(ckpt['model_state_dict'])
phi_base_model = AutoModelForCausalLM.from_pretrained(
'microsoft/phi-2',
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float32,
trust_remote_code=True
# device_map=device_map,
)
from peft import PeftModel
phi_new_model = "models/phi_adapter"
phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
phi_model = phi_model.merge_and_unload()
compute_type = 'float32'
if device != 'cpu':
compute_type = 'float16'
audi_model = whisperx.load_model("large-v2", device, compute_type=compute_type)
tokenizer = AutoTokenizer.from_pretrained('microsoft/phi-2', trust_remote_code=True)
tokenizer.pad_token = tokenizer.unk_token
### app functions ##
context_added = False
context = None
context_type = ''
query = ''
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
global context, context_type, context_added, query
context_added = False
if not context_type and '</context>' not in text:
history += text
history += "**Please add context (upload image/audio or enter text followed by </context>"
elif not context_type:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
else:
if '</context>' in text:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
elif context_type in ['text', 'image']:
query = 'Human### ' + text + '\n' + 'AI### '
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, file):
global context_added, context, context_type
context_added = False
context_type = ''
context = None
history = history + [((file.name,), None)]
history += [("Building context...", None)]
image = Image.open(file)
inputs = clip_processor(images=image, return_tensors="pt")
x = clip_model(**inputs, output_hidden_states=True)
image_features = x.hidden_states[-2]
context = vision_projector(image_features)
context_type = 'image'
context_added = True
return history
def audio_file(history, audio_file):
global context, context_type, context_added, query
if audio_file:
history = history + [((audio_file,), None)]
context_added = False
audio = whisperx.load_audio(audio_file)
result = audi_model.transcribe(audio, batch_size=1)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
text = result["segments"][0]["text"]
resp = "πŸ—£" + "_" + text.strip() + "_"
history += [(resp, None)]
context_type = 'text'
context_added = True
context = text
return history
def bot(history):
global context, context_added, query, context_type
if context_added:
response = "**Please proceed with your queries**"
context_added = False
query = ''
else:
if context_type == 'image':
query_ids = tokenizer.encode(query)
query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0)
query_embeds = phi_model.get_input_embeddings()(query_ids)
inputs_embeds = torch.cat([context, query_embeds], dim=1)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
elif context_type in ['text', 'audio']:
input_text = context + query
input_tokens = tokenizer.encode(input_text)
input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0)
inputs_embeds = phi_model.get_input_embeddings()(input_ids)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
else:
response = "**Please provide a valid context**"
if len(history[-1]) > 1:
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def clear_fn():
global context_added, context_type, context, query
context_added = False
context_type = ''
context = None
query = ''
return {
chatbot: None
}
with gr.Blocks() as app:
gr.Markdown(
"""
# ContextGPT - A Multimodel chatbot
### Upload image or audio to add a context. And then ask questions.
### You can also enter text followed by \</context\> to set the context in text format.
"""
)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
with gr.Row():
aud = gr.Audio(sources=['microphone', 'upload'], type='filepath', max_length=100, show_download_button=True,
show_share_button=True)
btn = gr.UploadButton("πŸ“·", file_types=["image"])
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Press enter to send ",
container=False,
)
with gr.Row():
clear = gr.Button("Clear")
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
bot, chatbot, chatbot
)
chatbot.like(print_like_dislike, None, None)
clear.click(clear_fn, None, chatbot, queue=False)
aud.stop_recording(audio_file, [chatbot, aud], [chatbot], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
aud.upload(audio_file, [chatbot, aud], [chatbot], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
app.queue()
app.launch()