Spaces:
Paused
Paused
File size: 7,139 Bytes
f414499 6cf9cf4 f414499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import os
import time
from PIL import Image
import torch
import whisperx
from transformers import CLIPVisionModel, CLIPImageProcessor, AutoModelForCausalLM, AutoTokenizer
from models.vision_projector_model import VisionProjector
from config import VisionProjectorConfig, app_config as cfg
device = 'cuda' if torch.cuda.is_available() else 'cpu'
clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
vision_projector = VisionProjector(VisionProjectorConfig())
ckpt = torch.load(cfg['vision_projector_file'], map_location=torch.device(device))
vision_projector.load_state_dict(ckpt['model_state_dict'])
phi_base_model = AutoModelForCausalLM.from_pretrained(
'microsoft/phi-2',
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float32,
trust_remote_code=True
# device_map=device_map,
)
from peft import PeftModel
phi_new_model = "models/phi_adapter"
phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
phi_model = phi_model.merge_and_unload()
compute_type = 'float32'
if device != 'cpu':
compute_type = 'float16'
audi_model = whisperx.load_model("large-v2", device, compute_type=compute_type)
tokenizer = AutoTokenizer.from_pretrained('microsoft/phi-2', trust_remote_code=True)
tokenizer.pad_token = tokenizer.unk_token
### app functions ##
context_added = False
context = None
context_type = ''
query = ''
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
global context, context_type, context_added, query
context_added = False
if not context_type and '</context>' not in text:
history += text
history += "**Please add context (upload image/audio or enter text followed by </context>"
elif not context_type:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
else:
if '</context>' in text:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
elif context_type in ['text', 'image']:
query = 'Human### ' + text + '\n' + 'AI### '
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, file):
global context_added, context, context_type
context_added = False
context_type = ''
context = None
history = history + [((file.name,), None)]
history += [("Building context...", None)]
image = Image.open(file)
inputs = clip_processor(images=image, return_tensors="pt")
x = clip_model(**inputs, output_hidden_states=True)
image_features = x.hidden_states[-2]
context = vision_projector(image_features)
context_type = 'image'
context_added = True
return history
def audio_file(history, audio_file):
global context, context_type, context_added, query
if audio_file:
history = history + [((audio_file,), None)]
context_added = False
audio = whisperx.load_audio(audio_file)
result = audi_model.transcribe(audio, batch_size=1)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
text = result["segments"][0]["text"]
resp = "π£" + "_" + text.strip() + "_"
history += [(resp, None)]
context_type = 'text'
context_added = True
context = text
return history
def bot(history):
global context, context_added, query, context_type
if context_added:
response = "**Please proceed with your queries**"
context_added = False
query = ''
else:
if context_type == 'image':
query_ids = tokenizer.encode(query)
query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0)
query_embeds = phi_model.get_input_embeddings()(query_ids)
inputs_embeds = torch.cat([context, query_embeds], dim=1)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
elif context_type in ['text', 'audio']:
input_text = context + query
input_tokens = tokenizer.encode(input_text)
input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0)
inputs_embeds = phi_model.get_input_embeddings()(input_ids)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
else:
response = "**Please provide a valid context**"
if len(history[-1]) > 1:
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def clear_fn():
global context_added, context_type, context, query
context_added = False
context_type = ''
context = None
query = ''
return {
chatbot: None
}
with gr.Blocks() as app:
gr.Markdown(
"""
# ContextGPT - A Multimodel chatbot
### Upload image or audio to add a context. And then ask questions.
### You can also enter text followed by \</context\> to set the context in text format.
"""
)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
with gr.Row():
aud = gr.Audio(sources=['microphone', 'upload'], type='filepath', max_length=100, show_download_button=True,
show_share_button=True)
btn = gr.UploadButton("π·", file_types=["image"])
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Press enter to send ",
container=False,
)
with gr.Row():
clear = gr.Button("Clear")
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
bot, chatbot, chatbot
)
chatbot.like(print_like_dislike, None, None)
clear.click(clear_fn, None, chatbot, queue=False)
aud.stop_recording(audio_file, [chatbot, aud], [chatbot], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
aud.upload(audio_file, [chatbot, aud], [chatbot], queue=False).then(
bot, chatbot, chatbot, api_name="bot_response"
)
app.queue()
app.launch()
|