import os import gradio as gr from fastai.learner import load_learner from fastai.vision.core import PILImage from huggingface_hub import hf_hub_download learner = load_learner(hf_hub_download("pinkpekoe/lesson2-bear-classifier", "export.pkl")) def predict_bear_type(img_path): img = PILImage.create(img_path) pred, pred_idx, probs = learner.predict(img) probabilities = [ f"{probs[i]:.02f}*" if i == pred_idx else f"{probs[i]:.02f}" for i in range(len(probs)) ] return f"Prediction: {pred}; Probabilities: " + ", ".join(probabilities) title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article = "
" examples = ["black.jpeg", "brown.jpeg", "teddy.jpeg"] interpretation = "default" enable_queue = True iface = gr.Interface( fn=predict_bear_type, inputs="image", outputs="text", title=title, description=description, article=article, examples=examples, interpretation=interpretation, ) iface.launch(enable_queue=enable_queue)