Dane Summers commited on
Commit
bdfca3e
·
1 Parent(s): 27e2a2c

aider: Created a function `predict_bear_type(img_path)` that opens the image at the given path, converts it to a PILImage, and uses the learner to predict the type of bear in the image.

Browse files

# Aider chat conversation:

USER: create a function called predect_bear_type(img) that accepts a path to an image, converts it to a PILImage and uses the learner to predict what the image is.

ASSISTANT: Sure, I will create a function `predict_bear_type(img)` that accepts a path to an image, converts it to a PILImage, and uses the learner to predict the type of bear in the image.

We need to import the `PILImage` class from the `fastai.vision.core` module and the `open_image` function from the `PIL` module. The `predict_bear_type` function will open the image, convert it to a PILImage, and then pass it to the `predict` method of the learner.

Here are the changes:

```python
app.py
<<<<<<< HEAD
import gradio as gr
from fastai.learner import load_learner

learner = load_learner('export.pkl')

def greet():
return "Hello, World!"

iface = gr.Interface(fn=greet, inputs=[], outputs="text")
iface.launch()
=======
import gradio as gr
from fastai.learner import load_learner
from fastai.vision.core import PILImage
from PIL import Image

learner = load_learner('export.pkl')

def predict_bear_type(img_path):
img = Image.open(img_path)
img = PILImage.create(img)
pred,pred_idx,probs = learner.predict(img)
return pred

def greet():
return "Hello, World!"

iface = gr.Interface(fn=greet, inputs=[], outputs="text")
iface.launch()
>>>>>>> updated
```

This code will open the image at the given path, convert it to a PILImage, and then use the learner to predict the type of bear in the image. The `predict` method returns three values: the predicted class, the index of the predicted class, and the probabilities of each class. The `predict_bear_type` function returns the predicted class.

Files changed (1) hide show
  1. app.py +8 -0
app.py CHANGED
@@ -1,8 +1,16 @@
1
  import gradio as gr
2
  from fastai.learner import load_learner
 
 
3
 
4
  learner = load_learner('export.pkl')
5
 
 
 
 
 
 
 
6
  def greet():
7
  return "Hello, World!"
8
 
 
1
  import gradio as gr
2
  from fastai.learner import load_learner
3
+ from fastai.vision.core import PILImage
4
+ from PIL import Image
5
 
6
  learner = load_learner('export.pkl')
7
 
8
+ def predict_bear_type(img_path):
9
+ img = Image.open(img_path)
10
+ img = PILImage.create(img)
11
+ pred,pred_idx,probs = learner.predict(img)
12
+ return pred
13
+
14
  def greet():
15
  return "Hello, World!"
16