|
|
|
import os |
|
import random |
|
import torch |
|
import pickle |
|
import numpy as np |
|
|
|
from typing import List, Tuple |
|
|
|
def seed_everything(seed): |
|
random.seed(seed) |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
|
|
|
|
class FeatureStats: |
|
''' |
|
Class to store statistics of features, including all features and mean/covariance. |
|
|
|
Args: |
|
capture_all: Whether to store all the features. |
|
capture_mean_cov: Whether to store mean and covariance. |
|
max_items: Maximum number of items to store. |
|
''' |
|
def __init__(self, capture_all: bool = False, capture_mean_cov: bool = False, max_items: int = None): |
|
''' |
|
''' |
|
self.capture_all = capture_all |
|
self.capture_mean_cov = capture_mean_cov |
|
self.max_items = max_items |
|
self.num_items = 0 |
|
self.num_features = None |
|
self.all_features = None |
|
self.raw_mean = None |
|
self.raw_cov = None |
|
|
|
def set_num_features(self, num_features: int): |
|
''' |
|
Set the number of features diminsions. |
|
|
|
Args: |
|
num_features: Number of features diminsions. |
|
''' |
|
if self.num_features is not None: |
|
assert num_features == self.num_features |
|
else: |
|
self.num_features = num_features |
|
self.all_features = [] |
|
self.raw_mean = np.zeros([num_features], dtype=np.float64) |
|
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64) |
|
|
|
def is_full(self) -> bool: |
|
''' |
|
Check if the maximum number of samples is reached. |
|
|
|
Returns: |
|
True if the storage is full, False otherwise. |
|
''' |
|
return (self.max_items is not None) and (self.num_items >= self.max_items) |
|
|
|
def append(self, x: np.ndarray): |
|
''' |
|
Add the newly computed features to the list. Update the mean and covariance. |
|
|
|
Args: |
|
x: New features to record. |
|
''' |
|
x = np.asarray(x, dtype=np.float32) |
|
assert x.ndim == 2 |
|
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items): |
|
if self.num_items >= self.max_items: |
|
return |
|
x = x[:self.max_items - self.num_items] |
|
|
|
self.set_num_features(x.shape[1]) |
|
self.num_items += x.shape[0] |
|
if self.capture_all: |
|
self.all_features.append(x) |
|
if self.capture_mean_cov: |
|
x64 = x.astype(np.float64) |
|
self.raw_mean += x64.sum(axis=0) |
|
self.raw_cov += x64.T @ x64 |
|
|
|
def append_torch(self, x: torch.Tensor, rank: int, num_gpus: int): |
|
''' |
|
Add the newly computed PyTorch features to the list. Update the mean and covariance. |
|
|
|
Args: |
|
x: New features to record. |
|
rank: Rank of the current GPU. |
|
num_gpus: Total number of GPUs. |
|
''' |
|
assert isinstance(x, torch.Tensor) and x.ndim == 2 |
|
assert 0 <= rank < num_gpus |
|
if num_gpus > 1: |
|
ys = [] |
|
for src in range(num_gpus): |
|
y = x.clone() |
|
torch.distributed.broadcast(y, src=src) |
|
ys.append(y) |
|
x = torch.stack(ys, dim=1).flatten(0, 1) |
|
self.append(x.cpu().numpy()) |
|
|
|
def get_all(self) -> np.ndarray: |
|
''' |
|
Get all the stored features as NumPy Array. |
|
|
|
Returns: |
|
Concatenation of the stored features. |
|
''' |
|
assert self.capture_all |
|
return np.concatenate(self.all_features, axis=0) |
|
|
|
def get_all_torch(self) -> torch.Tensor: |
|
''' |
|
Get all the stored features as PyTorch Tensor. |
|
|
|
Returns: |
|
Concatenation of the stored features. |
|
''' |
|
return torch.from_numpy(self.get_all()) |
|
|
|
def get_mean_cov(self) -> Tuple[np.ndarray, np.ndarray]: |
|
''' |
|
Get the mean and covariance of the stored features. |
|
|
|
Returns: |
|
Mean and covariance of the stored features. |
|
''' |
|
assert self.capture_mean_cov |
|
mean = self.raw_mean / self.num_items |
|
cov = self.raw_cov / self.num_items |
|
cov = cov - np.outer(mean, mean) |
|
return mean, cov |
|
|
|
def save(self, pkl_file: str): |
|
''' |
|
Save the features and statistics to a pickle file. |
|
|
|
Args: |
|
pkl_file: Path to the pickle file. |
|
''' |
|
with open(pkl_file, 'wb') as f: |
|
pickle.dump(self.__dict__, f) |
|
|
|
@staticmethod |
|
def load(pkl_file: str) -> 'FeatureStats': |
|
''' |
|
Load the features and statistics from a pickle file. |
|
|
|
Args: |
|
pkl_file: Path to the pickle file. |
|
''' |
|
with open(pkl_file, 'rb') as f: |
|
s = pickle.load(f) |
|
obj = FeatureStats(capture_all=s['capture_all'], max_items=s['max_items']) |
|
obj.__dict__.update(s) |
|
print('Loaded %d features from %s' % (obj.num_items, pkl_file)) |
|
return obj |
|
|