demo / gradio_app.py
pillaryao's picture
Upload folder using huggingface_hub
acecd1b verified
raw
history blame
5.13 kB
import gradio as gr
from pathlib import Path
from scripts.inference import main
from omegaconf import OmegaConf
import argparse
from datetime import datetime
CONFIG_PATH = Path("configs/unet/second_stage.yaml")
CHECKPOINT_PATH = Path("checkpoints/latentsync_unet.pt")
def process_video(
video_path,
audio_path,
guidance_scale,
inference_steps,
seed,
):
# Create the temp directory if it doesn't exist
output_dir = Path("./temp")
output_dir.mkdir(parents=True, exist_ok=True)
# Convert paths to absolute Path objects and normalize them
video_file_path = Path(video_path)
video_path = video_file_path.absolute().as_posix()
audio_path = Path(audio_path).absolute().as_posix()
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
# Set the output path for the processed video
output_path = str(output_dir / f"{video_file_path.stem}_{current_time}.mp4") # Change the filename as needed
config = OmegaConf.load(CONFIG_PATH)
config["run"].update(
{
"guidance_scale": guidance_scale,
"inference_steps": inference_steps,
}
)
# Parse the arguments
args = create_args(video_path, audio_path, output_path, inference_steps, guidance_scale, seed)
try:
result = main(
config=config,
args=args,
)
print("Processing completed successfully.")
return output_path # Ensure the output path is returned
except Exception as e:
print(f"Error during processing: {str(e)}")
raise gr.Error(f"Error during processing: {str(e)}")
def create_args(
video_path: str, audio_path: str, output_path: str, inference_steps: int, guidance_scale: float, seed: int
) -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--inference_ckpt_path", type=str, required=True)
parser.add_argument("--video_path", type=str, required=True)
parser.add_argument("--audio_path", type=str, required=True)
parser.add_argument("--video_out_path", type=str, required=True)
parser.add_argument("--inference_steps", type=int, default=20)
parser.add_argument("--guidance_scale", type=float, default=1.0)
parser.add_argument("--seed", type=int, default=1247)
return parser.parse_args(
[
"--inference_ckpt_path",
CHECKPOINT_PATH.absolute().as_posix(),
"--video_path",
video_path,
"--audio_path",
audio_path,
"--video_out_path",
output_path,
"--inference_steps",
str(inference_steps),
"--guidance_scale",
str(guidance_scale),
"--seed",
str(seed),
]
)
# Create Gradio interface
with gr.Blocks(title="LatentSync Video Processing") as demo:
gr.Markdown(
"""
# LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
Upload a video and audio file to process with LatentSync model.
<div align="center">
<strong>Chunyu Li1,2 Chao Zhang1 Weikai Xu1 Jinghui Xie1,† Weiguo Feng1
Bingyue Peng1 Weiwei Xing2,†</strong>
</div>
<div align="center">
<strong>1ByteDance 2Beijing Jiaotong University</strong>
</div>
<div style="display:flex;justify-content:center;column-gap:4px;">
<a href="https://github.com/bytedance/LatentSync">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/pdf/2412.09262">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
</div>
"""
)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input Video")
audio_input = gr.Audio(label="Input Audio", type="filepath")
with gr.Row():
guidance_scale = gr.Slider(
minimum=1.0,
maximum=3.5,
value=1.5,
step=0.5,
label="Guidance Scale",
)
inference_steps = gr.Slider(minimum=10, maximum=50, value=20, step=1, label="Inference Steps")
with gr.Row():
seed = gr.Number(value=1247, label="Random Seed", precision=0)
process_btn = gr.Button("Process Video")
with gr.Column():
video_output = gr.Video(label="Output Video")
gr.Examples(
examples=[
["assets/demo1_video.mp4", "assets/demo1_audio.wav"],
["assets/demo2_video.mp4", "assets/demo2_audio.wav"],
["assets/demo3_video.mp4", "assets/demo3_audio.wav"],
],
inputs=[video_input, audio_input],
)
process_btn.click(
fn=process_video,
inputs=[
video_input,
audio_input,
guidance_scale,
inference_steps,
seed,
],
outputs=video_output,
)
if __name__ == "__main__":
demo.launch(inbrowser=True, share=True)