pierreguillou commited on
Commit
e7d8eda
·
1 Parent(s): 1cededf

image size + boxes infos

Browse files
Files changed (1) hide show
  1. app.py +20 -2
app.py CHANGED
@@ -10,6 +10,7 @@ import cv2
10
  from unilm.dit.object_detection.ditod import add_vit_config
11
 
12
  import torch
 
13
 
14
  from detectron2.config import CfgNode as CN
15
  from detectron2.config import get_cfg
@@ -51,8 +52,18 @@ def analyze_image(img):
51
  result_image = result.get_image()[:, :, ::-1]
52
 
53
  num_instances = len(output)
 
 
 
 
 
 
 
 
 
 
54
 
55
- return result_image, num_instances
56
 
57
  title = "Interactive demo: Document Layout Analysis with DiT"
58
  description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
@@ -62,7 +73,14 @@ css = ".output-image, .input-image, .image-preview {height: 600px !important}"
62
 
63
  iface = gr.Interface(fn=analyze_image,
64
  inputs=gr.inputs.Image(type="numpy", label="document image"),
65
- outputs=[gr.outputs.Image(type="numpy", label="annotated document"), gr.outputs.Textbox(label="num instances")],
 
 
 
 
 
 
 
66
  title=title,
67
  description=description,
68
  examples=examples,
 
10
  from unilm.dit.object_detection.ditod import add_vit_config
11
 
12
  import torch
13
+ import numpy as np
14
 
15
  from detectron2.config import CfgNode as CN
16
  from detectron2.config import get_cfg
 
52
  result_image = result.get_image()[:, :, ::-1]
53
 
54
  num_instances = len(output)
55
+ image_size = output._image_size
56
+ fields = list(output.get_fields().keys())
57
+ for field in fields:
58
+ if field == 'pred_boxes':
59
+ boxes = output.get_fields()[field]
60
+ boxes_numpy = boxes.tensor.cpu().numpy()
61
+ boxes_bytes = boxes_numpy.tobytes()
62
+ boxes_numpy_shape = str(boxes_numpy.shape)
63
+ boxes_numpy_dtype = str(boxes_numpy.dtype)
64
+ # boxes_recover = torch.from_numpy(np.frombuffer(boxes_bytes, dtype=boxes_numpy_dtype).reshape(boxes_numpy_shape))
65
 
66
+ return result_image, num_instances, image_size, boxes_bytes, boxes_numpy_shape, boxes_numpy_dtype
67
 
68
  title = "Interactive demo: Document Layout Analysis with DiT"
69
  description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
 
73
 
74
  iface = gr.Interface(fn=analyze_image,
75
  inputs=gr.inputs.Image(type="numpy", label="document image"),
76
+ outputs=[
77
+ gr.outputs.Image(type="numpy", label="annotated document"),
78
+ gr.outputs.Textbox(label="num instances"),
79
+ gr.outputs.Textbox(label="image size (h,w in pixels)"),
80
+ gr.outputs.Textbox(label="boxes bytes"),
81
+ gr.outputs.Textbox(label="boxes numpy shape"),
82
+ gr.outputs.Textbox(label="boxes numpy dtype"),
83
+ ],
84
  title=title,
85
  description=description,
86
  examples=examples,