pierrefdz commited on
Commit
1cc9a2b
·
1 Parent(s): e4409fa

added helpers

Browse files
Files changed (1) hide show
  1. wm_interactive/templates/index.html +8 -12
wm_interactive/templates/index.html CHANGED
@@ -44,9 +44,9 @@
44
 
45
  <h4>Detection Methods</h4>
46
  <p><strong>Maryland</strong>: A token-level detection algorithm that analyzes how unexpected each token is, based on the paper "<a href="https://arxiv.org/abs/2301.10226" target="_blank">A Watermark for Large Language Models</a>" by Kirchenbauer et al.</p>
47
- <p><strong>Maryland Z-score</strong>: A variant of the Maryland detector that uses z-scores for better statistical interpretation.</p>
48
- <p><strong>OpenAI</strong>: A watermarking method similar to what was described in "<a href="https://arxiv.org/abs/2306.04634" target="_blank">A Watermark for Large Language Models</a>" by Kirchenbauer et al., inspired by initial reports from OpenAI.</p>
49
- <p><strong>OpenAI Z-score</strong>: A variant of the OpenAI detector that uses z-scores for better statistical interpretation.</p>
50
 
51
  <h4>Parameters Explained</h4>
52
  <dl class="help-description-list">
@@ -57,7 +57,7 @@
57
  <dd>The random seed used for watermarking. The detector must use the same seed that was used when generating the text. In a real-world scenario, this would be kept private by the model provider.</dd>
58
 
59
  <dt>N-gram Size</dt>
60
- <dd>The number of previous tokens considered when choosing "greenlist" tokens. Larger values make the watermark more robust against edits but may reduce text quality.</dd>
61
 
62
  <dt>Delta</dt>
63
  <dd>The bias added to "greenlist" tokens during generation. Higher values make the watermark stronger but might affect text quality. Typical values range from 1.0 to 5.0.</dd>
@@ -78,22 +78,18 @@
78
  <dd>A measure of how likely the text contains a watermark. Higher scores indicate stronger evidence of watermarking.</dd>
79
 
80
  <dt>P-value</dt>
81
- <dd>The statistical significance of the detection. Lower values (especially p &lt; 0.05) indicate strong evidence that the text was watermarked. Values close to 0.5 suggest no watermark is present.</dd>
82
  </dl>
83
 
84
  <h4>Related Papers</h4>
85
  <ul class="paper-references">
86
  <li>
87
  <a href="https://arxiv.org/abs/2301.10226" target="_blank">A Watermark for Large Language Models</a>
88
- <span class="paper-authors">Kirchenbauer, Geiping, et al. (2023)</span>
89
  </li>
90
  <li>
91
- <a href="https://arxiv.org/abs/2306.04634" target="_blank">Robust Distortion-free Watermarks for Language Models</a>
92
- <span class="paper-authors">Kuditipudi, Thickstun, et al. (2023)</span>
93
- </li>
94
- <li>
95
- <a href="https://arxiv.org/abs/2305.08883" target="_blank">Provable Robust Watermarking for AI-Generated Text</a>
96
- <span class="paper-authors">Christ, Mireshghallah, et al. (2023)</span>
97
  </li>
98
  </ul>
99
  </div>
 
44
 
45
  <h4>Detection Methods</h4>
46
  <p><strong>Maryland</strong>: A token-level detection algorithm that analyzes how unexpected each token is, based on the paper "<a href="https://arxiv.org/abs/2301.10226" target="_blank">A Watermark for Large Language Models</a>" by Kirchenbauer et al.</p>
47
+ <p><strong>OpenAI</strong>: A similar watermarking method inspired by initial reports from OpenAI.</p>
48
+ <p><strong>Maryland Z-score</strong>: A worse variant of the Maryland detector that uses z-scores for statistical interpretation.</p>
49
+ <p><strong>OpenAI Z-score</strong>: A worse variant of the OpenAI detector that uses z-scores for statistical interpretation.</p>
50
 
51
  <h4>Parameters Explained</h4>
52
  <dl class="help-description-list">
 
57
  <dd>The random seed used for watermarking. The detector must use the same seed that was used when generating the text. In a real-world scenario, this would be kept private by the model provider.</dd>
58
 
59
  <dt>N-gram Size</dt>
60
+ <dd>The number of previous tokens considered when choosing "greenlist" tokens. Larger values make the watermark less robust against edits but may improve text quality.</dd>
61
 
62
  <dt>Delta</dt>
63
  <dd>The bias added to "greenlist" tokens during generation. Higher values make the watermark stronger but might affect text quality. Typical values range from 1.0 to 5.0.</dd>
 
78
  <dd>A measure of how likely the text contains a watermark. Higher scores indicate stronger evidence of watermarking.</dd>
79
 
80
  <dt>P-value</dt>
81
+ <dd>The statistical significance of the detection. Lower values (especially p &lt; 1e-6) indicate strong evidence that the text was watermarked. Values close to 0.5 suggest no watermark is present.</dd>
82
  </dl>
83
 
84
  <h4>Related Papers</h4>
85
  <ul class="paper-references">
86
  <li>
87
  <a href="https://arxiv.org/abs/2301.10226" target="_blank">A Watermark for Large Language Models</a>
88
+ <span class="paper-authors">Kirchenbauer, et al. (2023)</span>
89
  </li>
90
  <li>
91
+ <a href="https://arxiv.org/abs/2308.00113" target="_blank">Three Bricks to Consolidate Watermarks for Large Language Models</a>
92
+ <span class="paper-authors">Fernandez, et al. (2023)</span>
 
 
 
 
93
  </li>
94
  </ul>
95
  </div>