|
import io |
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
|
|
|
|
class ImageEncoder: |
|
|
|
@torch.inference_mode() |
|
def encode_torch(self, img: torch.Tensor, quality=95): |
|
if img.ndim == 2: |
|
img = ( |
|
img[None] |
|
.repeat_interleave(3, dim=0) |
|
.permute(1, 2, 0) |
|
.contiguous() |
|
.clamp(0, 255) |
|
.type(torch.uint8) |
|
) |
|
elif img.ndim == 3: |
|
if img.shape[0] == 3: |
|
img = img.permute(1, 2, 0).contiguous().clamp(0, 255).type(torch.uint8) |
|
elif img.shape[2] == 3: |
|
img = img.contiguous().clamp(0, 255).type(torch.uint8) |
|
else: |
|
raise ValueError(f"Unsupported image shape: {img.shape}") |
|
else: |
|
raise ValueError(f"Unsupported image num dims: {img.ndim}") |
|
|
|
img = img.cpu().numpy().astype(np.uint8) |
|
im = Image.fromarray(img) |
|
iob = io.BytesIO() |
|
im.save(iob, format="JPEG", quality=quality) |
|
iob.seek(0) |
|
return iob |
|
|