File size: 24,437 Bytes
3778bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import os
from collections import namedtuple
from typing import TYPE_CHECKING, List
import torch
from loguru import logger
if TYPE_CHECKING:
from lora_loading import LoraWeights
from util import ModelSpec
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1"
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark_limit = 20
torch.set_float32_matmul_precision("high")
import math
from pydantic import BaseModel
from torch import Tensor, nn
from torch.nn import functional as F
class FluxParams(BaseModel):
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
# attention is always same shape each time it's called per H*W, so compile with fullgraph
# @torch.compile(mode="reduce-overhead", fullgraph=True, disable=DISABLE_COMPILE)
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = F.scaled_dot_product_attention(q, k, v).transpose(1, 2)
x = x.reshape(*x.shape[:-2], -1)
return x
# @torch.compile(mode="reduce-overhead", disable=DISABLE_COMPILE)
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
)
out = out.reshape(*out.shape[:-1], 2, 2)
return out
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape)
class EmbedND(nn.Module):
def __init__(
self,
dim: int,
theta: int,
axes_dim: list[int],
dtype: torch.dtype = torch.bfloat16,
):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
self.dtype = dtype
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[
rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype)
for i in range(n_axes)
],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
/ half
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class MLPEmbedder(nn.Module):
def __init__(
self, in_dim: int, hidden_dim: int, prequantized: bool = False, quantized=False
):
from float8_quantize import F8Linear
super().__init__()
self.in_layer = (
nn.Linear(in_dim, hidden_dim, bias=True)
if not prequantized
else (
F8Linear(
in_features=in_dim,
out_features=hidden_dim,
bias=True,
)
if quantized
else nn.Linear(in_dim, hidden_dim, bias=True)
)
)
self.silu = nn.SiLU()
self.out_layer = (
nn.Linear(hidden_dim, hidden_dim, bias=True)
if not prequantized
else (
F8Linear(
in_features=hidden_dim,
out_features=hidden_dim,
bias=True,
)
if quantized
else nn.Linear(hidden_dim, hidden_dim, bias=True)
)
)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
return F.rms_norm(x.float(), self.scale.shape, self.scale, eps=1e-6).to(x)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q, k
class SelfAttention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
prequantized: bool = False,
):
super().__init__()
from float8_quantize import F8Linear
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = (
nn.Linear(dim, dim * 3, bias=qkv_bias)
if not prequantized
else F8Linear(
in_features=dim,
out_features=dim * 3,
bias=qkv_bias,
)
)
self.norm = QKNorm(head_dim)
self.proj = (
nn.Linear(dim, dim)
if not prequantized
else F8Linear(
in_features=dim,
out_features=dim,
bias=True,
)
)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
B, L, D = x.shape
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
return q, k, v
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = self.rearrange_for_norm(qkv)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"])
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, quantized_modulation: bool = False):
super().__init__()
from float8_quantize import F8Linear
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = (
nn.Linear(dim, self.multiplier * dim, bias=True)
if not quantized_modulation
else F8Linear(
in_features=dim,
out_features=self.multiplier * dim,
bias=True,
)
)
self.act = nn.SiLU()
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
qkv_bias: bool = False,
dtype: torch.dtype = torch.float16,
quantized_modulation: bool = False,
prequantized: bool = False,
):
super().__init__()
from float8_quantize import F8Linear
self.dtype = dtype
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(
hidden_size, double=True, quantized_modulation=quantized_modulation
)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
prequantized=prequantized,
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True)
if not prequantized
else F8Linear(
in_features=hidden_size,
out_features=mlp_hidden_dim,
bias=True,
)
),
nn.GELU(approximate="tanh"),
(
nn.Linear(mlp_hidden_dim, hidden_size, bias=True)
if not prequantized
else F8Linear(
in_features=mlp_hidden_dim,
out_features=hidden_size,
bias=True,
)
),
)
self.txt_mod = Modulation(
hidden_size, double=True, quantized_modulation=quantized_modulation
)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
prequantized=prequantized,
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True)
if not prequantized
else F8Linear(
in_features=hidden_size,
out_features=mlp_hidden_dim,
bias=True,
)
),
nn.GELU(approximate="tanh"),
(
nn.Linear(mlp_hidden_dim, hidden_size, bias=True)
if not prequantized
else F8Linear(
in_features=mlp_hidden_dim,
out_features=hidden_size,
bias=True,
)
),
)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
self.do_clamp = dtype == torch.float16
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
B, L, D = x.shape
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
return q, k, v
def forward(
self,
img: Tensor,
txt: Tensor,
vec: Tensor,
pe: Tensor,
) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = self.rearrange_for_norm(img_qkv)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp(
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp(
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
)
if self.do_clamp:
img = img.clamp(min=-32000, max=32000)
txt = txt.clamp(min=-32000, max=32000)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
dtype: torch.dtype = torch.float16,
quantized_modulation: bool = False,
prequantized: bool = False,
):
super().__init__()
from float8_quantize import F8Linear
self.dtype = dtype
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = (
nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
if not prequantized
else F8Linear(
in_features=hidden_size,
out_features=hidden_size * 3 + self.mlp_hidden_dim,
bias=True,
)
)
# proj and mlp_out
self.linear2 = (
nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
if not prequantized
else F8Linear(
in_features=hidden_size + self.mlp_hidden_dim,
out_features=hidden_size,
bias=True,
)
)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(
hidden_size,
double=False,
quantized_modulation=quantized_modulation and prequantized,
)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
self.do_clamp = dtype == torch.float16
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod = self.modulation(vec)[0]
pre_norm = self.pre_norm(x)
x_mod = (1 + mod.scale) * pre_norm + mod.shift
qkv, mlp = torch.split(
self.linear1(x_mod),
[3 * self.hidden_size, self.mlp_hidden_dim],
dim=-1,
)
B, L, D = qkv.shape
q, k, v = qkv.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
attn = attention(q, k, v, pe=pe)
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
if self.do_clamp:
out = (x + mod.gate * output).clamp(min=-32000, max=32000)
else:
out = x + mod.gate * output
return out
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, config: "ModelSpec", dtype: torch.dtype = torch.float16):
super().__init__()
self.dtype = dtype
self.params = config.params
self.in_channels = config.params.in_channels
self.out_channels = self.in_channels
self.loras: List[LoraWeights] = []
prequantized_flow = config.prequantized_flow
quantized_embedders = config.quantize_flow_embedder_layers and prequantized_flow
quantized_modulation = config.quantize_modulation and prequantized_flow
from float8_quantize import F8Linear
if config.params.hidden_size % config.params.num_heads != 0:
raise ValueError(
f"Hidden size {config.params.hidden_size} must be divisible by num_heads {config.params.num_heads}"
)
pe_dim = config.params.hidden_size // config.params.num_heads
if sum(config.params.axes_dim) != pe_dim:
raise ValueError(
f"Got {config.params.axes_dim} but expected positional dim {pe_dim}"
)
self.hidden_size = config.params.hidden_size
self.num_heads = config.params.num_heads
self.pe_embedder = EmbedND(
dim=pe_dim,
theta=config.params.theta,
axes_dim=config.params.axes_dim,
dtype=self.dtype,
)
self.img_in = (
nn.Linear(self.in_channels, self.hidden_size, bias=True)
if not prequantized_flow
else (
F8Linear(
in_features=self.in_channels,
out_features=self.hidden_size,
bias=True,
)
if quantized_embedders
else nn.Linear(self.in_channels, self.hidden_size, bias=True)
)
)
self.time_in = MLPEmbedder(
in_dim=256,
hidden_dim=self.hidden_size,
prequantized=prequantized_flow,
quantized=quantized_embedders,
)
self.vector_in = MLPEmbedder(
config.params.vec_in_dim,
self.hidden_size,
prequantized=prequantized_flow,
quantized=quantized_embedders,
)
self.guidance_in = (
MLPEmbedder(
in_dim=256,
hidden_dim=self.hidden_size,
prequantized=prequantized_flow,
quantized=quantized_embedders,
)
if config.params.guidance_embed
else nn.Identity()
)
self.txt_in = (
nn.Linear(config.params.context_in_dim, self.hidden_size)
if not quantized_embedders
else (
F8Linear(
in_features=config.params.context_in_dim,
out_features=self.hidden_size,
bias=True,
)
if quantized_embedders
else nn.Linear(config.params.context_in_dim, self.hidden_size)
)
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=config.params.mlp_ratio,
qkv_bias=config.params.qkv_bias,
dtype=self.dtype,
quantized_modulation=quantized_modulation,
prequantized=prequantized_flow,
)
for _ in range(config.params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=config.params.mlp_ratio,
dtype=self.dtype,
quantized_modulation=quantized_modulation,
prequantized=prequantized_flow,
)
for _ in range(config.params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def get_lora(self, identifier: str):
for lora in self.loras:
if lora.path == identifier or lora.name == identifier:
return lora
def has_lora(self, identifier: str):
for lora in self.loras:
if lora.path == identifier or lora.name == identifier:
return True
def load_lora(self, path: str, scale: float, name: str = None):
from lora_loading import (
LoraWeights,
apply_lora_to_model,
remove_lora_from_module,
)
if self.has_lora(path):
lora = self.get_lora(path)
if lora.scale == scale:
logger.warning(
f"Lora {lora.name} already loaded with same scale - ignoring!"
)
else:
remove_lora_from_module(self, lora, lora.scale)
apply_lora_to_model(self, lora, scale)
for idx, lora_ in enumerate(self.loras):
if lora_.path == lora.path:
self.loras[idx].scale = scale
break
else:
_, lora = apply_lora_to_model(self, path, scale, return_lora_resolved=True)
self.loras.append(LoraWeights(lora, path, name, scale))
def unload_lora(self, path_or_identifier: str):
from lora_loading import remove_lora_from_module
removed = False
for idx, lora_ in enumerate(list(self.loras)):
if lora_.path == path_or_identifier or lora_.name == path_or_identifier:
remove_lora_from_module(self, lora_.weights, lora_.scale)
self.loras.pop(idx)
removed = True
break
if not removed:
logger.warning(
f"Couldn't remove lora {path_or_identifier} as it wasn't found fused to the model!"
)
else:
logger.info("Successfully removed lora from module.")
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError(
"Didn't get guidance strength for guidance distilled model."
)
vec = vec + self.guidance_in(
timestep_embedding(guidance, 256).type(self.dtype)
)
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
# double stream blocks
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
# single stream blocks
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
@classmethod
def from_pretrained(
cls: "Flux", path: str, dtype: torch.dtype = torch.float16
) -> "Flux":
from safetensors.torch import load_file
from util import load_config_from_path
config = load_config_from_path(path)
with torch.device("meta"):
klass = cls(config=config, dtype=dtype)
if not config.prequantized_flow:
klass.type(dtype)
ckpt = load_file(config.ckpt_path, device="cpu")
klass.load_state_dict(ckpt, assign=True)
return klass.to("cpu")
|