File size: 5,570 Bytes
3778bc0
 
 
 
 
 
002c192
3778bc0
002c192
3778bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
002c192
3778bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import subprocess
import spaces
import torch
from safetensors.torch import load_file
from flux_pipeline import FluxPipeline
import gradio as gr
from PIL import Image

def download_models():
    """
    Download required models at application startup using wget.
    """
    model_urls = [
        "https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/flux1-dev.safetensors",
        "https://huggingface.co/black-forest-labs/FLUX.1-dev/resolve/main/ae.safetensors",
    ]
    for url in model_urls:
        filename = url.split("/")[-1]
        if not os.path.exists(filename):
            print(f"Downloading {filename}...")
            subprocess.run(["wget", "-O", filename, url], check=True)
        else:
            print(f"{filename} already exists, skipping download.")

    print("All models are ready.")


def load_sft(ckpt_path, device="cpu"):
    """
    Load a safetensors file.
    Args:
        ckpt_path (str): Local path to the safetensors file.
        device (str): Device to load the file onto.
    Returns:
        Safetensors model state dictionary.
    """
    if os.path.exists(ckpt_path):
        print(f"Loading local checkpoint: {ckpt_path}")
        return load_file(ckpt_path, device=device)
    else:
        raise FileNotFoundError(f"Checkpoint not found: {ckpt_path}")


def create_demo(config_path: str):
    generator = FluxPipeline.load_pipeline_from_config_path(config_path)
    load_sft("photo.safetenors", "cuda")
    load_sft("dark.safetensors", "cuda")
    load_sft("perfection.safetensors", "cuda")
    @spaces.GPU
    def generate_image(
        prompt,
        width,
        height,
        num_steps,
        guidance,
        seed,
        init_image,
        image2image_strength,
        add_sampling_metadata,
    ):

        seed = int(seed)
        if seed == -1:
            seed = None
        out = generator.generate(
            prompt,
            width,
            height,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
            init_image=init_image,
            strength=image2image_strength,
            silent=False,
            num_images=1,
            return_seed=True,
        )
        image_bytes = out[0]
        return Image.open(image_bytes), str(out[1]), None

    is_schnell = generator.config.version == "flux-schnell"

    with gr.Blocks() as demo:
        gr.Markdown(f"# Flux Image Generation Demo - Model: {generator.config.version}")

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    value='a photo of a forest with mist swirling around the tree trunks. The word "FLUX" is painted over it in big, red brush strokes with visible texture',
                )
                do_img2img = gr.Checkbox(
                    label="Image to Image", value=False, interactive=not is_schnell
                )
                init_image = gr.Image(label="Input Image", visible=False)
                image2image_strength = gr.Slider(
                    0.0, 1.0, 0.8, step=0.1, label="Noising strength", visible=False
                )

                with gr.Accordion("Advanced Options", open=False):
                    width = gr.Slider(128, 8192, 1152, step=16, label="Width")
                    height = gr.Slider(128, 8192, 640, step=16, label="Height")
                    num_steps = gr.Slider(
                        1, 50, 4 if is_schnell else 20, step=1, label="Number of steps"
                    )
                    guidance = gr.Slider(
                        1.0,
                        10.0,
                        3.5,
                        step=0.1,
                        label="Guidance",
                        interactive=not is_schnell,
                    )
                    seed = gr.Textbox(-1, label="Seed (-1 for random)")
                    add_sampling_metadata = gr.Checkbox(
                        label="Add sampling parameters to metadata?", value=True
                    )

                generate_btn = gr.Button("Generate")

            with gr.Column(min_width="960px"):
                output_image = gr.Image(label="Generated Image")
                seed_output = gr.Number(label="Used Seed")
                warning_text = gr.Textbox(label="Warning", visible=False)

        def update_img2img(do_img2img):
            return {
                init_image: gr.update(visible=do_img2img),
                image2image_strength: gr.update(visible=do_img2img),
            }

        do_img2img.change(
            update_img2img, do_img2img, [init_image, image2image_strength]
        )

        generate_btn.click(
            fn=generate_image,
            inputs=[
                prompt,
                width,
                height,
                num_steps,
                guidance,
                seed,
                init_image,
                image2image_strength,
                add_sampling_metadata,
            ],
            outputs=[output_image, seed_output, warning_text],
        )

    return demo


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Flux")
    parser.add_argument(
        "--config", type=str, default="configs/config-dev-1-RTX6000ADA.json", help="Config file path"
    )
    parser.add_argument(
        "--share", action="store_true", help="Create a public link to your demo"
    )

    args = parser.parse_args()

    demo = create_demo(args.config)
    demo.launch(share=args.share)