Spaces:
Sleeping
Sleeping
import numpy as np | |
from .ops import * | |
class ImageNetPolicy(object): | |
""" Randomly choose one of the best 24 Sub-policies on ImageNet. | |
Example: | |
>>> policy = ImageNetPolicy() | |
>>> transformed = policy(image) | |
Example as a PyTorch Transform: | |
>>> transform = transforms.Compose([ | |
>>> transforms.Resize(256), | |
>>> ImageNetPolicy(), | |
>>> transforms.ToTensor()]) | |
""" | |
def __init__(self, fillcolor=(128, 128, 128)): | |
self.policies = [ | |
SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor), | |
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), | |
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor), | |
SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor), | |
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), | |
SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor), | |
SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor), | |
SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor), | |
SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor), | |
SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor), | |
SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor), | |
SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor), | |
SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor), | |
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), | |
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), | |
SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor), | |
SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor), | |
SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor), | |
SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor), | |
SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor), | |
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), | |
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), | |
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), | |
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), | |
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor) | |
] | |
def __call__(self, img): | |
policy_idx = random.randint(0, len(self.policies) - 1) | |
return self.policies[policy_idx](img) | |
def __repr__(self): | |
return "AutoAugment ImageNet Policy" | |
class CIFAR10Policy(object): | |
""" Randomly choose one of the best 25 Sub-policies on CIFAR10. | |
Example: | |
>>> policy = CIFAR10Policy() | |
>>> transformed = policy(image) | |
Example as a PyTorch Transform: | |
>>> transform=transforms.Compose([ | |
>>> transforms.Resize(256), | |
>>> CIFAR10Policy(), | |
>>> transforms.ToTensor()]) | |
""" | |
def __init__(self, fillcolor=(128, 128, 128)): | |
self.policies = [ | |
SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor), | |
SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor), | |
SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor), | |
SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor), | |
SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor), | |
SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor), | |
SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor), | |
SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor), | |
SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor), | |
SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor), | |
SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor), | |
SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor), | |
SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor), | |
SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor), | |
SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor), | |
SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor), | |
SubPolicy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor), | |
SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor), | |
SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor), | |
SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor), | |
SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor), | |
SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor), | |
SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor), | |
SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor), | |
SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor) | |
] | |
def __call__(self, img): | |
policy_idx = random.randint(0, len(self.policies) - 1) | |
return self.policies[policy_idx](img) | |
def __repr__(self): | |
return "AutoAugment CIFAR10 Policy" | |
class SVHNPolicy(object): | |
""" Randomly choose one of the best 25 Sub-policies on SVHN. | |
Example: | |
>>> policy = SVHNPolicy() | |
>>> transformed = policy(image) | |
Example as a PyTorch Transform: | |
>>> transform=transforms.Compose([ | |
>>> transforms.Resize(256), | |
>>> SVHNPolicy(), | |
>>> transforms.ToTensor()]) | |
""" | |
def __init__(self, fillcolor=(128, 128, 128)): | |
self.policies = [ | |
SubPolicy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor), | |
SubPolicy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor), | |
SubPolicy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor), | |
SubPolicy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor), | |
SubPolicy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor), | |
SubPolicy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor), | |
SubPolicy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor), | |
SubPolicy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor), | |
SubPolicy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor), | |
SubPolicy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor), | |
SubPolicy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor), | |
SubPolicy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor), | |
SubPolicy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor), | |
SubPolicy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor), | |
SubPolicy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor), | |
SubPolicy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor), | |
SubPolicy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor), | |
SubPolicy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor), | |
SubPolicy(0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor), | |
SubPolicy(0.1, "shearX", 6, 0.6, "invert", 5, fillcolor), | |
SubPolicy(0.7, "solarize", 2, 0.6, "translateY", 7, fillcolor), | |
SubPolicy(0.8, "shearY", 4, 0.8, "invert", 8, fillcolor), | |
SubPolicy(0.7, "shearX", 9, 0.8, "translateY", 3, fillcolor), | |
SubPolicy(0.8, "shearY", 5, 0.7, "autocontrast", 3, fillcolor), | |
SubPolicy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor) | |
] | |
def __call__(self, img): | |
policy_idx = random.randint(0, len(self.policies) - 1) | |
return self.policies[policy_idx](img) | |
def __repr__(self): | |
return "AutoAugment SVHN Policy" | |
class SubPolicy(object): | |
def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128)): | |
ranges = { | |
"shearX": np.linspace(0, 0.3, 10), | |
"shearY": np.linspace(0, 0.3, 10), | |
"translateX": np.linspace(0, 150 / 331, 10), | |
"translateY": np.linspace(0, 150 / 331, 10), | |
"rotate": np.linspace(0, 30, 10), | |
"color": np.linspace(0.0, 0.9, 10), | |
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(int), | |
"solarize": np.linspace(256, 0, 10), | |
"contrast": np.linspace(0.0, 0.9, 10), | |
"sharpness": np.linspace(0.0, 0.9, 10), | |
"brightness": np.linspace(0.0, 0.9, 10), | |
"autocontrast": [0] * 10, | |
"equalize": [0] * 10, | |
"invert": [0] * 10 | |
} | |
func = { | |
"shearX": ShearX(fillcolor=fillcolor), | |
"shearY": ShearY(fillcolor=fillcolor), | |
"translateX": TranslateX(fillcolor=fillcolor), | |
"translateY": TranslateY(fillcolor=fillcolor), | |
"rotate": Rotate(), | |
"color": Color(), | |
"posterize": Posterize(), | |
"solarize": Solarize(), | |
"contrast": Contrast(), | |
"sharpness": Sharpness(), | |
"brightness": Brightness(), | |
"autocontrast": AutoContrast(), | |
"equalize": Equalize(), | |
"invert": Invert() | |
} | |
self.p1 = p1 | |
self.operation1 = func[operation1] | |
self.magnitude1 = ranges[operation1][magnitude_idx1] | |
self.p2 = p2 | |
self.operation2 = func[operation2] | |
self.magnitude2 = ranges[operation2][magnitude_idx2] | |
def __call__(self, img): | |
if random.random() < self.p1: | |
img = self.operation1(img, self.magnitude1) | |
if random.random() < self.p2: | |
img = self.operation2(img, self.magnitude2) | |
return img | |