from huggingface_hub import InferenceClient import gradio as gr model_path = "ibm-granite/granite-34b-code-instruct-8k" model_path="ibm-granite/granite-3b-code-instruct-2k" import os hftoken = os.environ["hftoken"] client = InferenceClient(model=model_path, token=hftoken) def format_prompt(system, message, history): prompt = [{"role": "system", "content": system}] for user_prompt, bot_response in history: prompt += {"role": "user", "content": user_prompt} prompt += {"role": "assistant", "content": bot_response} prompt += {"role": "user", "content": message} return prompt def generate( prompt, history, system_message=None, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(system_message, prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.TextArea( label="System message", value="", interactive=True, info="context", ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title=model_path ).launch(show_api=True)