Update main.py
Browse files
main.py
CHANGED
@@ -1,69 +1,62 @@
|
|
1 |
-
import os
|
2 |
from flask import Flask, request, render_template
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
from collections import Counter
|
7 |
import matplotlib
|
8 |
-
matplotlib.use('Agg') #
|
9 |
import matplotlib.pyplot as plt
|
|
|
10 |
import base64
|
11 |
from io import BytesIO
|
12 |
|
13 |
-
# Set writable cache directories within /tmp
|
14 |
-
os.environ["HF_HOME"] = "/tmp/huggingface_cache" # Replaces TRANSFORMERS_CACHE
|
15 |
-
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
16 |
-
|
17 |
-
# Create directories if they don't exist
|
18 |
-
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
19 |
-
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
|
23 |
-
# Load Model from Local Directory
|
24 |
-
MODEL_PATH = "bert_imdb_model.bin"
|
25 |
-
TOKENIZER_PATH = "bert-base-uncased"
|
26 |
|
27 |
-
|
28 |
-
print("Loading model from local file...")
|
29 |
-
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
30 |
-
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')))
|
31 |
-
else:
|
32 |
-
print(f"Error: Model file {MODEL_PATH} not found.")
|
33 |
-
exit(1)
|
34 |
|
35 |
-
model
|
36 |
-
tokenizer = BertTokenizer.from_pretrained(
|
|
|
37 |
|
38 |
-
# ... rest of your code (keep the rest unchanged) ...
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
def predict_sentiment(text):
|
42 |
-
|
43 |
-
|
|
|
44 |
|
|
|
45 |
sentiments = []
|
46 |
for chunk in chunks:
|
47 |
-
inputs = tokenizer.decode(chunk, skip_special_tokens=True
|
|
|
48 |
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
49 |
-
|
50 |
with torch.no_grad():
|
51 |
outputs = model(**inputs)
|
52 |
-
|
53 |
sentiments.append(outputs.logits.argmax(dim=1).item())
|
54 |
|
55 |
-
|
|
|
|
|
56 |
return 'Positive' if majority_sentiment == 1 else 'Negative'
|
57 |
|
58 |
@app.route('/')
|
59 |
def upload_file():
|
60 |
return render_template('upload.html')
|
61 |
|
|
|
62 |
@app.route('/analyze_text', methods=['POST'])
|
63 |
def analyze_text():
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
|
68 |
@app.route('/uploader', methods=['GET', 'POST'])
|
69 |
def upload_file_post():
|
@@ -71,25 +64,38 @@ def upload_file_post():
|
|
71 |
f = request.files['file']
|
72 |
data = pd.read_csv(f)
|
73 |
|
|
|
74 |
data['sentiment'] = data['review'].apply(predict_sentiment)
|
75 |
|
|
|
76 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
77 |
summary = f"Total Reviews: {len(data)}<br>" \
|
78 |
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
79 |
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
80 |
|
|
|
81 |
fig, ax = plt.subplots()
|
82 |
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
83 |
ax.set_ylabel('Counts')
|
84 |
ax.set_title('Sentiment Analysis Summary')
|
85 |
-
|
|
|
86 |
img = BytesIO()
|
87 |
plt.savefig(img, format='png', bbox_inches='tight')
|
88 |
img.seek(0)
|
|
|
|
|
89 |
plot_url = base64.b64encode(img.getvalue()).decode('utf8')
|
|
|
|
|
90 |
plt.close(fig)
|
91 |
|
92 |
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url)
|
93 |
|
|
|
|
|
94 |
if __name__ == '__main__':
|
95 |
app.run(host='0.0.0.0', port=7860, debug=True)
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, render_template
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
from collections import Counter
|
6 |
import matplotlib
|
7 |
+
matplotlib.use('Agg') # Set the backend before importing pyplot
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
import base64
|
11 |
from io import BytesIO
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
model_name = "philipobiorah/bert-imdb-model"
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Load tokenizer and model
|
20 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
21 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
22 |
|
|
|
23 |
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
27 |
|
28 |
def predict_sentiment(text):
|
29 |
+
# Split the text into chunks of 512 tokens
|
30 |
+
tokenized_text = tokenizer.encode(text, add_special_tokens=True)
|
31 |
+
chunks = [tokenized_text[i:i + 512] for i in range(0, len(tokenized_text), 512)]
|
32 |
|
33 |
+
# Predict sentiment for each chunk
|
34 |
sentiments = []
|
35 |
for chunk in chunks:
|
36 |
+
# inputs = tokenizer.decode(chunk, skip_special_tokens=True)
|
37 |
+
inputs = tokenizer.decode(chunk, skip_special_tokens=True, clean_up_tokenization_spaces=True) # Explicitly set clean_up_tokenization_spaces
|
38 |
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
|
|
39 |
with torch.no_grad():
|
40 |
outputs = model(**inputs)
|
|
|
41 |
sentiments.append(outputs.logits.argmax(dim=1).item())
|
42 |
|
43 |
+
# Aggregate the predictions (majority voting)
|
44 |
+
sentiment_counts = Counter(sentiments)
|
45 |
+
majority_sentiment = sentiment_counts.most_common(1)[0][0]
|
46 |
return 'Positive' if majority_sentiment == 1 else 'Negative'
|
47 |
|
48 |
@app.route('/')
|
49 |
def upload_file():
|
50 |
return render_template('upload.html')
|
51 |
|
52 |
+
|
53 |
@app.route('/analyze_text', methods=['POST'])
|
54 |
def analyze_text():
|
55 |
+
if request.method == 'POST':
|
56 |
+
text = request.form['text']
|
57 |
+
sentiment = predict_sentiment(text)
|
58 |
+
return render_template('upload.html', sentiment=sentiment)
|
59 |
+
|
60 |
|
61 |
@app.route('/uploader', methods=['GET', 'POST'])
|
62 |
def upload_file_post():
|
|
|
64 |
f = request.files['file']
|
65 |
data = pd.read_csv(f)
|
66 |
|
67 |
+
# Predict sentiment for each review
|
68 |
data['sentiment'] = data['review'].apply(predict_sentiment)
|
69 |
|
70 |
+
# Sentiment Analysis Summary
|
71 |
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
72 |
summary = f"Total Reviews: {len(data)}<br>" \
|
73 |
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
74 |
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
75 |
|
76 |
+
# Generate plot
|
77 |
fig, ax = plt.subplots()
|
78 |
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
79 |
ax.set_ylabel('Counts')
|
80 |
ax.set_title('Sentiment Analysis Summary')
|
81 |
+
|
82 |
+
# Save the plot to a BytesIO object
|
83 |
img = BytesIO()
|
84 |
plt.savefig(img, format='png', bbox_inches='tight')
|
85 |
img.seek(0)
|
86 |
+
|
87 |
+
# Encode the image in base64 and decode it to UTF-8
|
88 |
plot_url = base64.b64encode(img.getvalue()).decode('utf8')
|
89 |
+
|
90 |
+
# Close the plot to free memory
|
91 |
plt.close(fig)
|
92 |
|
93 |
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url)
|
94 |
|
95 |
+
|
96 |
+
|
97 |
if __name__ == '__main__':
|
98 |
app.run(host='0.0.0.0', port=7860, debug=True)
|
99 |
+
|
100 |
+
|
101 |
+
|