philipobiorah's picture
reset to previous upload method
b824c83 verified
raw
history blame
3.74 kB
import os
from flask import Flask, request, render_template
import pandas as pd
import torch
from transformers import BertTokenizer, BertForSequenceClassification
from collections import Counter
import matplotlib
matplotlib.use('Agg') # Prevents GUI issues for Matplotlib
import matplotlib.pyplot as plt
import base64
from io import BytesIO
# Fix Permission Issues: Set Writable Directories for Hugging Face & Matplotlib
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["MPLCONFIGDIR"] = "/tmp"
# Create directories if they don’t exist
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
os.makedirs(os.environ["TRANSFORMERS_CACHE"], exist_ok=True)
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
app = Flask(__name__)
# Load Model from Hugging Face
MODEL_NAME = "philipobiorah/bert-imdb-model"
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained(MODEL_NAME)
model.eval()
# Function to Predict Sentiment
def predict_sentiment(text):
# Split the text into chunks of 512 tokens
tokenized_text = tokenizer.encode(text, add_special_tokens=True)
chunks = [tokenized_text[i:i + 512] for i in range(0, len(tokenized_text), 512)]
# Predict sentiment for each chunk
sentiments = []
for chunk in chunks:
# inputs = tokenizer.decode(chunk, skip_special_tokens=True)
inputs = tokenizer.decode(chunk, skip_special_tokens=True, clean_up_tokenization_spaces=True) # Explicitly set clean_up_tokenization_spaces
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
sentiments.append(outputs.logits.argmax(dim=1).item())
# Aggregate the predictions (majority voting)
sentiment_counts = Counter(sentiments)
majority_sentiment = sentiment_counts.most_common(1)[0][0]
return 'Positive' if majority_sentiment == 1 else 'Negative'
@app.route('/')
def upload_file():
return render_template('upload.html')
@app.route('/analyze_text', methods=['POST'])
def analyze_text():
if request.method == 'POST':
text = request.form['text']
sentiment = predict_sentiment(text)
return render_template('upload.html', sentiment=sentiment)
@app.route('/uploader', methods=['GET', 'POST'])
def upload_file_post():
if request.method == 'POST':
f = request.files['file']
data = pd.read_csv(f)
# Predict sentiment for each review
data['sentiment'] = data['review'].apply(predict_sentiment)
# Sentiment Analysis Summary
sentiment_counts = data['sentiment'].value_counts().to_dict()
summary = f"Total Reviews: {len(data)}<br>" \
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
# Generate plot
fig, ax = plt.subplots()
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
ax.set_ylabel('Counts')
ax.set_title('Sentiment Analysis Summary')
# Save the plot to a BytesIO object
img = BytesIO()
plt.savefig(img, format='png', bbox_inches='tight')
img.seek(0)
# Encode the image in base64 and decode it to UTF-8
plot_url = base64.b64encode(img.getvalue()).decode('utf8')
# Close the plot to free memory
plt.close(fig)
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True)