|
import os |
|
from flask import Flask, request, render_template |
|
import pandas as pd |
|
import torch |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
from collections import Counter |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
os.environ["HF_HOME"] = "/tmp" |
|
os.environ["TRANSFORMERS_CACHE"] = "/tmp" |
|
os.environ["MPLCONFIGDIR"] = "/tmp" |
|
|
|
|
|
os.makedirs(os.environ["HF_HOME"], exist_ok=True) |
|
os.makedirs(os.environ["TRANSFORMERS_CACHE"], exist_ok=True) |
|
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True) |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
MODEL_NAME = "philipobiorah/bert-imdb-model" |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
model = BertForSequenceClassification.from_pretrained(MODEL_NAME) |
|
|
|
model.eval() |
|
|
|
|
|
|
|
def predict_sentiment(text): |
|
|
|
tokenized_text = tokenizer.encode(text, add_special_tokens=True) |
|
chunks = [tokenized_text[i:i + 512] for i in range(0, len(tokenized_text), 512)] |
|
|
|
|
|
sentiments = [] |
|
for chunk in chunks: |
|
|
|
inputs = tokenizer.decode(chunk, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
inputs = tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
sentiments.append(outputs.logits.argmax(dim=1).item()) |
|
|
|
|
|
sentiment_counts = Counter(sentiments) |
|
majority_sentiment = sentiment_counts.most_common(1)[0][0] |
|
return 'Positive' if majority_sentiment == 1 else 'Negative' |
|
|
|
@app.route('/') |
|
def upload_file(): |
|
return render_template('upload.html') |
|
|
|
|
|
@app.route('/analyze_text', methods=['POST']) |
|
def analyze_text(): |
|
if request.method == 'POST': |
|
text = request.form['text'] |
|
sentiment = predict_sentiment(text) |
|
return render_template('upload.html', sentiment=sentiment) |
|
|
|
|
|
@app.route('/uploader', methods=['GET', 'POST']) |
|
def upload_file_post(): |
|
if request.method == 'POST': |
|
f = request.files['file'] |
|
data = pd.read_csv(f) |
|
|
|
|
|
data['sentiment'] = data['review'].apply(predict_sentiment) |
|
|
|
|
|
sentiment_counts = data['sentiment'].value_counts().to_dict() |
|
summary = f"Total Reviews: {len(data)}<br>" \ |
|
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \ |
|
f"Negative: {sentiment_counts.get('Negative', 0)}<br>" |
|
|
|
|
|
fig, ax = plt.subplots() |
|
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue']) |
|
ax.set_ylabel('Counts') |
|
ax.set_title('Sentiment Analysis Summary') |
|
|
|
|
|
img = BytesIO() |
|
plt.savefig(img, format='png', bbox_inches='tight') |
|
img.seek(0) |
|
|
|
|
|
plot_url = base64.b64encode(img.getvalue()).decode('utf8') |
|
|
|
|
|
plt.close(fig) |
|
|
|
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=7860, debug=True) |
|
|
|
|
|
|
|
|