Create chat_interface.py
Browse files- chat_interface.py +154 -0
chat_interface.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import json
|
4 |
+
import chromadb
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from openai import OpenAI
|
10 |
+
|
11 |
+
from langchain_community.embeddings import AnyscaleEmbeddings
|
12 |
+
from langchain_community.vectorstores import Chroma
|
13 |
+
|
14 |
+
from huggingface_hub import CommitScheduler
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
tesla_10k_collection = 'tesla-10k-2019-to-2023'
|
21 |
+
|
22 |
+
anyscale_api_key = os.environ['ANYSCALE_API_KEY']
|
23 |
+
|
24 |
+
client = OpenAI(
|
25 |
+
base_url="https://api.endpoints.anyscale.com/v1",
|
26 |
+
api_key=anyscale_api_key
|
27 |
+
)
|
28 |
+
|
29 |
+
qna_model = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
30 |
+
|
31 |
+
embedding_model = AnyscaleEmbeddings(
|
32 |
+
client=client,
|
33 |
+
model='thenlper/gte-large'
|
34 |
+
)
|
35 |
+
|
36 |
+
chromadb_client = chromadb.PersistentClient(path='./tesla_db')
|
37 |
+
|
38 |
+
vectorstore_persisted = Chroma(
|
39 |
+
client=chromadb_client,
|
40 |
+
collection_name=tesla_10k_collection,
|
41 |
+
embedding_function=embedding_model
|
42 |
+
)
|
43 |
+
|
44 |
+
retriever = vectorstore_persisted.as_retriever(
|
45 |
+
search_type='similarity',
|
46 |
+
search_kwargs={'k': 5}
|
47 |
+
)
|
48 |
+
|
49 |
+
# Prepare the logging functionality
|
50 |
+
|
51 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
52 |
+
log_folder = log_file.parent
|
53 |
+
|
54 |
+
scheduler = CommitScheduler(
|
55 |
+
repo_id="document-qna-chroma-anyscale-logs",
|
56 |
+
repo_type="dataset",
|
57 |
+
folder_path=log_folder,
|
58 |
+
path_in_repo="data",
|
59 |
+
every=2
|
60 |
+
)
|
61 |
+
|
62 |
+
qna_system_message = """
|
63 |
+
You are an assistant to a financial services firm who answers user queries on annual reports.
|
64 |
+
Users will ask questions delimited by triple backticks, that is, ```.
|
65 |
+
User input will have the context required by you to answer user questions.
|
66 |
+
This context will begin with the token: ###Context.
|
67 |
+
The context contains references to specific portions of a document relevant to the user query.
|
68 |
+
Please answer only using the context provided in the input. However, do not mention anything about the context in your answer.
|
69 |
+
If the answer is not found in the context, respond "I don't know".
|
70 |
+
"""
|
71 |
+
|
72 |
+
qna_user_message_template = """
|
73 |
+
###Context
|
74 |
+
Here are some documents that are relevant to the question.
|
75 |
+
{context}
|
76 |
+
```
|
77 |
+
{question}
|
78 |
+
```
|
79 |
+
"""
|
80 |
+
|
81 |
+
def predict(input: str, history):
|
82 |
+
|
83 |
+
"""
|
84 |
+
Predict the response of the chatbot and complete a running list of chat history.
|
85 |
+
"""
|
86 |
+
|
87 |
+
relevant_document_chunks = retriever.invoke(input)
|
88 |
+
context_list = [d.page_content for d in relevant_document_chunks]
|
89 |
+
context_for_query = "\n".join(context_list)
|
90 |
+
|
91 |
+
user_message = [{
|
92 |
+
'role': 'user',
|
93 |
+
'content': qna_user_message_template.format(
|
94 |
+
context=context_for_query,
|
95 |
+
question=input
|
96 |
+
)
|
97 |
+
}]
|
98 |
+
|
99 |
+
prompt = [{'role':'system', 'content': qna_system_message}]
|
100 |
+
|
101 |
+
for entry in history:
|
102 |
+
prompt += (
|
103 |
+
[{'role': 'user', 'content': entry[0]}] +
|
104 |
+
[{'role': 'assistant', 'content': entry[1]}]
|
105 |
+
)
|
106 |
+
|
107 |
+
final_prompt = prompt + user_message
|
108 |
+
|
109 |
+
try:
|
110 |
+
|
111 |
+
response = client.chat.completions.create(
|
112 |
+
model=qna_model,
|
113 |
+
messages=final_prompt,
|
114 |
+
temperature=0
|
115 |
+
)
|
116 |
+
|
117 |
+
prediction = response.choices[0].message.content.strip()
|
118 |
+
except Exception as e:
|
119 |
+
prediction = f"Sorry, I cannot answer your question at this point. {e}"
|
120 |
+
|
121 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
122 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
123 |
+
# access
|
124 |
+
|
125 |
+
with scheduler.lock:
|
126 |
+
with log_file.open("a") as f:
|
127 |
+
f.write(json.dumps(
|
128 |
+
{
|
129 |
+
'user_input': user_input,
|
130 |
+
'retrieved_context': context_for_query,
|
131 |
+
'model_response': prediction
|
132 |
+
}
|
133 |
+
))
|
134 |
+
f.write("\n")
|
135 |
+
|
136 |
+
return prediction
|
137 |
+
|
138 |
+
demo = gr.ChatInterface(
|
139 |
+
fn=predict,
|
140 |
+
title="AMA on Tesla 10-K statements",
|
141 |
+
description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
|
142 |
+
article="Note that questions that are not relevant to the Tesla 10-K report will not be answered.",
|
143 |
+
examples=[["What was the total revenue of the company in 2022?"],
|
144 |
+
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words."],
|
145 |
+
["What was the company's debt level in 2020?"],
|
146 |
+
["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries."],
|
147 |
+
["What is the view of the management on the future of electric vehicle batteries?"]
|
148 |
+
],
|
149 |
+
cache_examples=False,
|
150 |
+
concurrency_limit=8,
|
151 |
+
show_progress="full"
|
152 |
+
)
|
153 |
+
|
154 |
+
demo.launch(auth=("demouser", os.getenv('PASSWD')))
|