cordia-api / app.py
petertill's picture
Update app.py
491f951 verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import uvicorn
import os
app = FastAPI()
API_KEY = os.environ.get("API_KEY")
try:
model = AutoModelForCausalLM.from_pretrained("petertill/cordia-a6")
tokenizer = AutoTokenizer.from_pretrained("petertill/cordia-a6")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print("Model and tokenizer loaded successfully!")
class Message(BaseModel):
role: str # "system", "user", or "assistant"
content: str
class GenerateRequest(BaseModel):
system_prompt : str
messages: list[Message]
key: str
max_length: int = 1024
temperature: float = 0.7
class TokenUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class GenerateResponse(BaseModel):
generated_text: str
usage: TokenUsage
@app.post("/generate", response_model=GenerateResponse)
async def generate(request: GenerateRequest):
if request.key != API_KEY:
raise HTTPException(status_code=401, detail="Unauthorized")
try:
# Format messages into a prompt format the model expects
formatted_prompt = ""
formatted_prompt += f"<|system|>\n{request.system_prompt}</s>\n"
for message in request.messages:
if message.role == "system":
formatted_prompt += f"<system>\n{message.content}\n</system>\n"
elif message.role == "user":
formatted_prompt += f"<user>\n{message.content}\n</user>\n"
elif message.role == "assistant":
formatted_prompt += f"<assistant>\n{message.content}\n</assistant>\n"
# Add final assistant prefix for generation
formatted_prompt += "<assistant>\n"
# Count tokens in the prompt
prompt_tokens = len(tokenizer.encode(formatted_prompt))
output = pipe(
formatted_prompt,
#max_length=request.max_length,
#temperature=request.temperature,
do_sample=True,
return_full_text=True # Make sure we get the full text
)[0]['generated_text']
# Extract only the newly generated assistant response
response_text = output.split("<assistant>\n")[-1].split("</assistant>")[0]
# Count tokens in the completion
full_output_tokens = len(tokenizer.encode(output))
completion_tokens = full_output_tokens - prompt_tokens
usage = TokenUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
return GenerateResponse(generated_text=response_text,usage=usage)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
#try:
#output = pipe(request.prompt)[0]['generated_text']
#return GenerateResponse(generated_text=output)
#except Exception as e:
#
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)