Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
|
|
|
|
|
2 |
from subprocess import Popen, PIPE as P
|
3 |
from langchain_experimental.tools.python.tool import PythonREPLTool as PYT
|
4 |
from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type
|
@@ -13,408 +15,10 @@ import torch
|
|
13 |
import importlib.util
|
14 |
import logging
|
15 |
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
from pydantic import ConfigDict, model_validator
|
21 |
-
|
22 |
-
from import_utils import (
|
23 |
-
IMPORT_ERROR,
|
24 |
-
is_ipex_available,
|
25 |
-
is_openvino_available,
|
26 |
-
is_optimum_intel_available,
|
27 |
-
is_optimum_intel_version,
|
28 |
-
)
|
29 |
-
|
30 |
-
DEFAULT_MODEL_ID = "gpt2"
|
31 |
-
DEFAULT_TASK = "text-generation"
|
32 |
-
VALID_TASKS = (
|
33 |
-
"text2text-generation",
|
34 |
-
"text-generation",
|
35 |
-
"summarization",
|
36 |
-
"translation",
|
37 |
-
)
|
38 |
-
DEFAULT_BATCH_SIZE = 4
|
39 |
-
_MIN_OPTIMUM_VERSION = "1.21"
|
40 |
-
|
41 |
-
|
42 |
-
logger = logging.getLogger(__name__)
|
43 |
-
|
44 |
-
|
45 |
-
class HuggingFacePipeline(BaseLLM):
|
46 |
-
global torch
|
47 |
-
"""HuggingFace Pipeline API.
|
48 |
-
|
49 |
-
To use, you should have the ``transformers`` python package installed.
|
50 |
-
|
51 |
-
Only supports `text-generation`, `text2text-generation`, `summarization` and
|
52 |
-
`translation` for now.
|
53 |
-
|
54 |
-
Example using from_model_id:
|
55 |
-
.. code-block:: python
|
56 |
-
|
57 |
-
from langchain_huggingface import HuggingFacePipeline
|
58 |
-
hf = HuggingFacePipeline.from_model_id(
|
59 |
-
model_id="gpt2",
|
60 |
-
task="text-generation",
|
61 |
-
pipeline_kwargs={"max_new_tokens": 10},
|
62 |
-
)
|
63 |
-
Example passing pipeline in directly:
|
64 |
-
.. code-block:: python
|
65 |
-
|
66 |
-
from langchain_huggingface import HuggingFacePipeline
|
67 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
68 |
-
|
69 |
-
model_id = "gpt2"
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
71 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
72 |
-
pipe = pipeline(
|
73 |
-
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
74 |
-
)
|
75 |
-
hf = HuggingFacePipeline(pipeline=pipe)
|
76 |
-
"""
|
77 |
-
|
78 |
-
pipeline: Any = None #: :meta private:
|
79 |
-
model_id: Optional[str] = None
|
80 |
-
"""The model name. If not set explicitly by the user,
|
81 |
-
it will be inferred from the provided pipeline (if available).
|
82 |
-
If neither is provided, the DEFAULT_MODEL_ID will be used."""
|
83 |
-
model_kwargs: Optional[dict] = None
|
84 |
-
"""Keyword arguments passed to the model."""
|
85 |
-
pipeline_kwargs: Optional[dict] = None
|
86 |
-
"""Keyword arguments passed to the pipeline."""
|
87 |
-
batch_size: int = DEFAULT_BATCH_SIZE
|
88 |
-
"""Batch size to use when passing multiple documents to generate."""
|
89 |
-
|
90 |
-
model_config = ConfigDict(
|
91 |
-
extra="forbid",
|
92 |
-
)
|
93 |
-
|
94 |
-
@model_validator(mode="before")
|
95 |
-
@classmethod
|
96 |
-
def pre_init_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
97 |
-
"""Ensure model_id is set either by pipeline or user input."""
|
98 |
-
if "model_id" not in values:
|
99 |
-
if "pipeline" in values and values["pipeline"]:
|
100 |
-
values["model_id"] = values["pipeline"].model.name_or_path
|
101 |
-
else:
|
102 |
-
values["model_id"] = DEFAULT_MODEL_ID
|
103 |
-
return values
|
104 |
-
|
105 |
-
@classmethod
|
106 |
-
def from_model_id(
|
107 |
-
cls,
|
108 |
-
model_id: str,
|
109 |
-
task: str,
|
110 |
-
backend: str = "default",
|
111 |
-
device: Optional[int] = None,
|
112 |
-
device_map: Optional[str] = None,
|
113 |
-
model_kwargs: Optional[dict] = None,
|
114 |
-
pipeline_kwargs: Optional[dict] = None,
|
115 |
-
batch_size: int = DEFAULT_BATCH_SIZE,
|
116 |
-
**kwargs: Any,
|
117 |
-
) -> HuggingFacePipeline:
|
118 |
-
"""Construct the pipeline object from model_id and task."""
|
119 |
-
try:
|
120 |
-
from transformers import ( # type: ignore[import]
|
121 |
-
AutoModelForCausalLM,
|
122 |
-
AutoModelForSeq2SeqLM,
|
123 |
-
AutoTokenizer,
|
124 |
-
)
|
125 |
-
from transformers import pipeline as hf_pipeline # type: ignore[import]
|
126 |
-
|
127 |
-
except ImportError:
|
128 |
-
raise ValueError(
|
129 |
-
"Could not import transformers python package. "
|
130 |
-
"Please install it with `pip install transformers`."
|
131 |
-
)
|
132 |
-
|
133 |
-
_model_kwargs = model_kwargs.copy() if model_kwargs else {}
|
134 |
-
if device_map is not None:
|
135 |
-
if device is not None:
|
136 |
-
raise ValueError(
|
137 |
-
"Both `device` and `device_map` are specified. "
|
138 |
-
"`device` will override `device_map`. "
|
139 |
-
"You will most likely encounter unexpected behavior."
|
140 |
-
"Please remove `device` and keep "
|
141 |
-
"`device_map`."
|
142 |
-
)
|
143 |
-
|
144 |
-
if "device_map" in _model_kwargs:
|
145 |
-
raise ValueError("`device_map` is already specified in `model_kwargs`.")
|
146 |
-
|
147 |
-
_model_kwargs["device_map"] = device_map
|
148 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
149 |
-
|
150 |
-
if backend in {"openvino", "ipex"}:
|
151 |
-
if task not in VALID_TASKS:
|
152 |
-
raise ValueError(
|
153 |
-
f"Got invalid task {task}, "
|
154 |
-
f"currently only {VALID_TASKS} are supported"
|
155 |
-
)
|
156 |
-
|
157 |
-
err_msg = f'Backend: {backend} {IMPORT_ERROR.format(f"optimum[{backend}]")}'
|
158 |
-
if not is_optimum_intel_available():
|
159 |
-
raise ImportError(err_msg)
|
160 |
-
|
161 |
-
# TODO: upgrade _MIN_OPTIMUM_VERSION to 1.22 after release
|
162 |
-
min_optimum_version = (
|
163 |
-
"1.22"
|
164 |
-
if backend == "ipex" and task != "text-generation"
|
165 |
-
else _MIN_OPTIMUM_VERSION
|
166 |
-
)
|
167 |
-
if is_optimum_intel_version("<", min_optimum_version):
|
168 |
-
raise ImportError(
|
169 |
-
f"Backend: {backend} requires optimum-intel>="
|
170 |
-
f"{min_optimum_version}. You can install it with pip: "
|
171 |
-
"`pip install --upgrade --upgrade-strategy eager "
|
172 |
-
f"`optimum[{backend}]`."
|
173 |
-
)
|
174 |
-
|
175 |
-
if backend == "openvino":
|
176 |
-
if not is_openvino_available():
|
177 |
-
raise ImportError(err_msg)
|
178 |
-
|
179 |
-
from optimum.intel import ( # type: ignore[import]
|
180 |
-
OVModelForCausalLM,
|
181 |
-
OVModelForSeq2SeqLM,
|
182 |
-
)
|
183 |
-
|
184 |
-
model_cls = (
|
185 |
-
OVModelForCausalLM
|
186 |
-
if task == "text-generation"
|
187 |
-
else OVModelForSeq2SeqLM
|
188 |
-
)
|
189 |
-
else:
|
190 |
-
if not is_ipex_available():
|
191 |
-
raise ImportError(err_msg)
|
192 |
-
|
193 |
-
if task == "text-generation":
|
194 |
-
from optimum.intel import (
|
195 |
-
IPEXModelForCausalLM, # type: ignore[import]
|
196 |
-
)
|
197 |
-
|
198 |
-
model_cls = IPEXModelForCausalLM
|
199 |
-
else:
|
200 |
-
from optimum.intel import (
|
201 |
-
IPEXModelForSeq2SeqLM, # type: ignore[import]
|
202 |
-
)
|
203 |
-
|
204 |
-
model_cls = IPEXModelForSeq2SeqLM
|
205 |
-
|
206 |
-
else:
|
207 |
-
model_cls = (
|
208 |
-
AutoModelForCausalLM
|
209 |
-
if task == "text-generation"
|
210 |
-
else AutoModelForSeq2SeqLM
|
211 |
-
)
|
212 |
-
|
213 |
-
model = model_cls.from_pretrained(model_id, **_model_kwargs)
|
214 |
-
model=torch.compile(model,mode="max-autotune")
|
215 |
-
|
216 |
-
if tokenizer.pad_token is None:
|
217 |
-
if model.config.pad_token_id is not None:
|
218 |
-
tokenizer.pad_token_id = model.config.pad_token_id
|
219 |
-
elif model.config.eos_token_id is not None and isinstance(
|
220 |
-
model.config.eos_token_id, int
|
221 |
-
):
|
222 |
-
tokenizer.pad_token_id = model.config.eos_token_id
|
223 |
-
elif tokenizer.eos_token_id is not None:
|
224 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
225 |
-
else:
|
226 |
-
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
227 |
-
|
228 |
-
if (
|
229 |
-
(
|
230 |
-
getattr(model, "is_loaded_in_4bit", False)
|
231 |
-
or getattr(model, "is_loaded_in_8bit", False)
|
232 |
-
)
|
233 |
-
and device is not None
|
234 |
-
and backend == "default"
|
235 |
-
):
|
236 |
-
logger.warning(
|
237 |
-
f"Setting the `device` argument to None from {device} to avoid "
|
238 |
-
"the error caused by attempting to move the model that was already "
|
239 |
-
"loaded on the GPU using the Accelerate module to the same or "
|
240 |
-
"another device."
|
241 |
-
)
|
242 |
-
device = None
|
243 |
-
|
244 |
-
if (
|
245 |
-
device is not None
|
246 |
-
and importlib.util.find_spec("torch") is not None
|
247 |
-
and backend == "default"
|
248 |
-
):
|
249 |
-
import torch
|
250 |
-
|
251 |
-
cuda_device_count = torch.cuda.device_count()
|
252 |
-
if device < -1 or (device >= cuda_device_count):
|
253 |
-
raise ValueError(
|
254 |
-
f"Got device=={device}, "
|
255 |
-
f"device is required to be within [-1, {cuda_device_count})"
|
256 |
-
)
|
257 |
-
if device_map is not None and device < 0:
|
258 |
-
device = None
|
259 |
-
if device is not None and device < 0 and cuda_device_count > 0:
|
260 |
-
logger.warning(
|
261 |
-
"Device has %d GPUs available. "
|
262 |
-
"Provide device={deviceId} to `from_model_id` to use available"
|
263 |
-
"GPUs for execution. deviceId is -1 (default) for CPU and "
|
264 |
-
"can be a positive integer associated with CUDA device id.",
|
265 |
-
cuda_device_count,
|
266 |
-
)
|
267 |
-
if device is not None and device_map is not None and backend == "openvino":
|
268 |
-
logger.warning("Please set device for OpenVINO through: `model_kwargs`")
|
269 |
-
if "trust_remote_code" in _model_kwargs:
|
270 |
-
_model_kwargs = {
|
271 |
-
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
272 |
-
}
|
273 |
-
_pipeline_kwargs = pipeline_kwargs or {}
|
274 |
-
pipeline = hf_pipeline(
|
275 |
-
task=task,
|
276 |
-
model=model,
|
277 |
-
tokenizer=tokenizer,
|
278 |
-
device=device,
|
279 |
-
batch_size=batch_size,
|
280 |
-
model_kwargs=_model_kwargs,
|
281 |
-
**_pipeline_kwargs,
|
282 |
-
)
|
283 |
-
if pipeline.task not in VALID_TASKS:
|
284 |
-
raise ValueError(
|
285 |
-
f"Got invalid task {pipeline.task}, "
|
286 |
-
f"currently only {VALID_TASKS} are supported"
|
287 |
-
)
|
288 |
-
return cls(
|
289 |
-
pipeline=pipeline,
|
290 |
-
model_id=model_id,
|
291 |
-
model_kwargs=_model_kwargs,
|
292 |
-
pipeline_kwargs=_pipeline_kwargs,
|
293 |
-
batch_size=batch_size,
|
294 |
-
**kwargs,
|
295 |
-
)
|
296 |
-
|
297 |
-
@property
|
298 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
299 |
-
"""Get the identifying parameters."""
|
300 |
-
return {
|
301 |
-
"model_id": self.model_id,
|
302 |
-
"model_kwargs": self.model_kwargs,
|
303 |
-
"pipeline_kwargs": self.pipeline_kwargs,
|
304 |
-
}
|
305 |
-
|
306 |
-
@property
|
307 |
-
def _llm_type(self) -> str:
|
308 |
-
return "huggingface_pipeline"
|
309 |
-
|
310 |
-
def _generate(
|
311 |
-
self,
|
312 |
-
prompts: List[str],
|
313 |
-
stop: Optional[List[str]] = None,
|
314 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
315 |
-
**kwargs: Any,
|
316 |
-
) -> LLMResult:
|
317 |
-
# List to hold all results
|
318 |
-
text_generations: List[str] = []
|
319 |
-
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
320 |
-
skip_prompt = kwargs.get("skip_prompt", False)
|
321 |
-
|
322 |
-
for i in range(0, len(prompts), self.batch_size):
|
323 |
-
batch_prompts = prompts[i : i + self.batch_size]
|
324 |
-
|
325 |
-
# Process batch of prompts
|
326 |
-
responses = self.pipeline(
|
327 |
-
batch_prompts,
|
328 |
-
**pipeline_kwargs,
|
329 |
-
)
|
330 |
-
|
331 |
-
# Process each response in the batch
|
332 |
-
for j, response in enumerate(responses):
|
333 |
-
if isinstance(response, list):
|
334 |
-
# if model returns multiple generations, pick the top one
|
335 |
-
response = response[0]
|
336 |
-
|
337 |
-
if self.pipeline.task == "text-generation":
|
338 |
-
text = response["generated_text"]
|
339 |
-
elif self.pipeline.task == "text2text-generation":
|
340 |
-
text = response["generated_text"]
|
341 |
-
elif self.pipeline.task == "summarization":
|
342 |
-
text = response["summary_text"]
|
343 |
-
elif self.pipeline.task in "translation":
|
344 |
-
text = response["translation_text"]
|
345 |
-
else:
|
346 |
-
raise ValueError(
|
347 |
-
f"Got invalid task {self.pipeline.task}, "
|
348 |
-
f"currently only {VALID_TASKS} are supported"
|
349 |
-
)
|
350 |
-
if skip_prompt:
|
351 |
-
text = text[len(batch_prompts[j]) :]
|
352 |
-
# Append the processed text to results
|
353 |
-
text_generations.append(text)
|
354 |
-
|
355 |
-
return LLMResult(
|
356 |
-
generations=[[Generation(text=text)] for text in text_generations]
|
357 |
-
)
|
358 |
-
|
359 |
-
def _stream(
|
360 |
-
self,
|
361 |
-
prompt: str,
|
362 |
-
stop: Optional[List[str]] = None,
|
363 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
364 |
-
**kwargs: Any,
|
365 |
-
) -> Iterator[GenerationChunk]:
|
366 |
-
from threading import Thread
|
367 |
-
|
368 |
-
import torch
|
369 |
-
from transformers import (
|
370 |
-
StoppingCriteria,
|
371 |
-
StoppingCriteriaList,
|
372 |
-
TextIteratorStreamer,
|
373 |
-
)
|
374 |
-
|
375 |
-
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
376 |
-
skip_prompt = kwargs.get("skip_prompt", True)
|
377 |
-
|
378 |
-
if stop is not None:
|
379 |
-
stop = self.pipeline.tokenizer.convert_tokens_to_ids(stop)
|
380 |
-
stopping_ids_list = stop or []
|
381 |
-
|
382 |
-
class StopOnTokens(StoppingCriteria):
|
383 |
-
def __call__(
|
384 |
-
self,
|
385 |
-
input_ids: torch.LongTensor,
|
386 |
-
scores: torch.FloatTensor,
|
387 |
-
**kwargs: Any,
|
388 |
-
) -> bool:
|
389 |
-
for stop_id in stopping_ids_list:
|
390 |
-
if input_ids[0][-1] == stop_id:
|
391 |
-
return True
|
392 |
-
return False
|
393 |
-
|
394 |
-
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
395 |
-
|
396 |
-
streamer = TextIteratorStreamer(
|
397 |
-
self.pipeline.tokenizer,
|
398 |
-
timeout=60.0,
|
399 |
-
skip_prompt=skip_prompt,
|
400 |
-
skip_special_tokens=True,
|
401 |
-
)
|
402 |
-
generation_kwargs = dict(
|
403 |
-
text_inputs=prompt,
|
404 |
-
streamer=streamer,
|
405 |
-
stopping_criteria=stopping_criteria,
|
406 |
-
**pipeline_kwargs,
|
407 |
-
)
|
408 |
-
t1 = Thread(target=self.pipeline, kwargs=generation_kwargs)
|
409 |
-
t1.start()
|
410 |
-
|
411 |
-
for char in streamer:
|
412 |
-
chunk = GenerationChunk(text=char)
|
413 |
-
if run_manager:
|
414 |
-
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
415 |
-
|
416 |
-
yield chunk
|
417 |
-
|
418 |
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
|
419 |
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
420 |
|
|
|
1 |
+
import inspect
|
2 |
+
from langchain_huggingface import HuggingFacePipeline as HFP
|
3 |
+
path_hf=inspect.getfile(HFP)
|
4 |
from subprocess import Popen, PIPE as P
|
5 |
from langchain_experimental.tools.python.tool import PythonREPLTool as PYT
|
6 |
from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type
|
|
|
15 |
import importlib.util
|
16 |
import logging
|
17 |
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
18 |
+
with open(path_hf,"r") as f:
|
19 |
+
s=f.read()
|
20 |
+
with open(path_hf,"w") as f:
|
21 |
+
f.write(s.replace(" model = model_cls.from_pretrained(model_id, **_model_kwargs)"," model = torch.compile(model_cls.from_pretrained(model_id, **_model_kwargs),mode='max-autotune')"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
|
23 |
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
24 |
|