Spaces:
Sleeping
Sleeping
File size: 3,967 Bytes
eca433d b472985 ddb1584 e7a7122 b472985 a98c02f e87659d b472985 0e44529 b472985 a49d96b b472985 b5925b7 18f646d b472985 2ed007f a84d38a 2ed007f b472985 a49d96b 7233fbc 7d269ae 8beef67 a49d96b b472985 a49d96b 6e86bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
from langchain_huggingface import HuggingFaceEndpoint as HF
from subprocess import Popen, PIPE as P
from langchain_experimental.tools.python.tool import PythonREPLTool as PYT
from langchain.agents import load_tools, create_structured_chat_agent as Agent,AgentExecutor as Ex, AgentType as Type
from langchain.agents.agent_toolkits import create_retriever_tool as crt
from langchain_community.agent_toolkits import FileManagementToolkit as FMT
from langchain.tools import Tool
from langchain.memory import ConversationBufferMemory as MEM,RedisChatMessageHistory as HIS
from langchain.schema import SystemMessage as SM,HumanMessage as HM, AIMessage as AM
from langchain import hub
import os
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation'''
human = '''
{input}
{agent_scratchpad}
(reminder to respond in a JSON blob no matter what)'''
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
MessagesPlaceholder("chat_history", optional=True),
("human", human),
]
)
from langchain.retrievers import WikipediaRetriever as Wiki
import gradio as gr
chatbot = gr.Chatbot(
label="SYAI4.1",
show_copy_button=True,
layout="panel"
)
def terminal(c):
a=Popen(c,shell=True,stdin=P,stdout=P,stderr=P)
return a.stdout.read()+a.stderr.read()
llm=HF(repo_id="peterpeter8585/syai4.1")
tools=FMT().get_tools()
tools.append(PYT())
tools.extend(load_tools(["requests_all"],allow_dangerous_tools=True))
tools.extend(load_tools(["llm-math","ddg-search"],llm=llm))
tools.append(Tool.from_function(func=terminal,name="terminal",description="터미널 명령어실행에 적합함"))
tools.append(crt(name="wiki",description="위키 백과를 검색하여 정보를 가져온다",retriever=Wiki(lang="ko",top_k_results=1)))
def chat(message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p, chat_session=""):
messages=[SM(content=system_message+"And, Your name is Chatchat")]
for val in history:
if val[0]:
messages.append(HM(content=val[0]))
if val[1]:
messages.append(AM(content=val[1]))
messages.append(HM(content=message))
memory=MEM(memory_key="history")
agent=Ex(agent=Agent(llm,tools,prompt),tools=tools,verbose=True,handle_parsing_errors=True,memory=memory)
return agent.invoke({"input":messages,"chat_history":memory.buffer_as_messages})
ai1=gr.ChatInterface(
chat,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Textbox(label="chat_id(please enter the chat id!)")
],
)
ai1.launch() |