Spaces:
Runtime error
Runtime error
File size: 1,726 Bytes
e089b92 cc5f6e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
title: Flan T5 Token Ner
emoji: π
colorFrom: red
colorTo: gray
sdk: gradio
sdk_version: 5.23.3
app_file: app.py
pinned: false
license: mit
short_description: Classifies each token in the input text as LOC, ORG, PER, or
---
# Flan-T5 Token Classifier (NER Demo)
This Huggingface Space is a Gradio demo for the model [`pepegiallo/flan-t5-base_ner`](https://huggingface.co/pepegiallo/flan-t5-base_ner). It performs **token-level Named Entity Recognition (NER)** using a Flan-T5 encoder-based architecture.
---
## π What does this demo do?
You can enter any sentence, and the app will:
1. Split the sentence into tokens (words and punctuation)
2. For each token:
- Mark it with `<TSTART>` and `<TEND>` in the context of the sentence
- Send it through the model with the prompt: `classify token in: <wrapped sentence>`
3. Predict one of the following labels for each token:
- `PER` β Person
- `ORG` β Organization
- `LOC` β Location
- `O` β Not an entity
---
## π§ Example
Input:
```
Max Mustermann works at Microsoft and lives in Berlin.
```
Output:
```
Max -> PER
Mustermann -> PER
Microsoft -> ORG
Berlin -> LOC
```
---
## π¦ Model Details
- **Base model:** `google/flan-t5-base` (encoder only)
- **Fine-tuned on:** WikiANN, open-pii-masking-500k, and custom samples
- **Prompt-based classification** per token
- **Architecture:** T5 encoder + classification head
---
## π Try it out!
Type any sentence in English, German, French, Italian or Spanish, and the model will tag names, organizations, and locations.
For more details, check the full model card:
π [`pepegiallo/flan-t5-base_ner`](https://huggingface.co/pepegiallo/flan-t5-base_ner)
|