processor / app.py
pentarosarium's picture
progress more 70+
db7fce3
raw
history blame
23.2 kB
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import torch
from openpyxl import load_workbook
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from sentiment_decorators import sentiment_analysis_decorator
import transformers
from langchain_community.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.runnables import RunnablePassthrough
from huggingface_hub import login
from accelerate import init_empty_weights
import logging
import os
import openai
from transformers import MarianMTModel, MarianTokenizer
from langchain_community.chat_models import ChatOpenAI
from wordcloud import WordCloud
from collections import Counter
class TranslationModel:
def __init__(self, model_name="Helsinki-NLP/opus-mt-ru-en"):
self.tokenizer = MarianTokenizer.from_pretrained(model_name)
self.model = MarianMTModel.from_pretrained(model_name)
if torch.cuda.is_available():
self.model = self.model.to('cuda')
def translate(self, text):
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
if torch.cuda.is_available():
inputs = {k: v.to('cuda') for k, v in inputs.items()}
with torch.no_grad():
translated = self.model.generate(**inputs)
return self.tokenizer.decode(translated[0], skip_special_tokens=True)
def batch_translate(texts, batch_size=32):
translator = TranslationModel()
translated_texts = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
translations = [translator.translate(text) for text in batch]
translated_texts.extend(translations)
# Update progress
progress = (i + len(batch)) / len(texts)
st.progress(progress)
st.text(f"Предобработано {i + len(batch)} из {len(texts)} текстов")
return translated_texts
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")
@st.cache_resource
def load_model(model_id):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True
)
return tokenizer, model
def init_langchain_llm():
try:
# Try to get the Groq API key from Hugging Face secrets
if 'groq_key' in st.secrets:
groq_api_key = st.secrets['groq_key']
else:
st.error("Groq API key not found in Hugging Face secrets. Please add it with the key 'groq_key'.")
st.stop()
llm = ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
api_key=groq_api_key,
temperature=0.0
)
return llm
except Exception as e:
st.error(f"Error initializing the Groq LLM: {str(e)}")
st.stop()
def estimate_impact(llm, news_text, entity):
template = """
Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months. You should estimate the risk of loss or probability of profit.
If a precise monetary estimate is not possible, categorize the impact as one of the following:
1. "Значительный риск убытков" (Significant risk of loss)
2. "Умеренный риск убытков" (Moderate risk of loss)
3. "Незначительный риск убытков" (Minor risk of loss)
4. "Вероятность прибыли" (Probability of profit)
5. "Неопределенный эффект" (Uncertain effect)
Also provide a short reasoning (max 100 words) for your assessment.
Entity: {entity}
News: {news}
Your response should be in the following format:
Estimated Impact: [Your estimate or category]
Reasoning: [Your reasoning]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"entity": entity, "news": news_text})
# Parse the response
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
if isinstance(response, str) and "Estimated Impact:" in response and "Reasoning:" in response:
impact_part, reasoning_part = response.split("Reasoning:")
impact = impact_part.split("Estimated Impact:")[1].strip()
reasoning = reasoning_part.strip()
return impact, reasoning
def create_output_file_with_llm(df, uploaded_file, analysis_df):
wb = load_workbook("sample_file.xlsx")
# Update 'Сводка' sheet
summary_df = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего новостей': df.groupby('Объект').size(),
'Отрицательные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Negative').any(axis=1)].groupby('Объект').size(),
'Положительные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Positive').any(axis=1)].groupby('Объект').size(),
'Impact': df.groupby('Объект')['LLM_Impact'].agg(lambda x: x.value_counts().index[0] if x.any() else 'Неопределенный')
})
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], 'релевантен', sentiment, row['LLM_Impact'], row['Заголовок'], row['Выдержки из текста']])
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Анализ' sheet
analysis_df['LLM_Reasoning'] = df['LLM_Reasoning']
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
analysis_data.append([row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', '', row['Выдержки из текста']])
return pd.DataFrame(analysis_data, columns=['Объект', 'Заголовок', 'Признак', 'Пояснение', 'Текст сообщения'])
# Function for lemmatizing Russian text
def lemmatize_text(text):
if pd.isna(text):
return ""
if not isinstance(text, str):
text = str(text)
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Calculate max_length based on input length
input_length = inputs.input_ids.shape[1]
max_length = max(input_length + 10, int(input_length * 1.5)) # Ensure at least 10 new tokens
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
max_new_tokens=max_length, # Use max_new_tokens instead of max_length
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
@sentiment_analysis_decorator
def get_rubert1_sentiment(text):
result = rubert1(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_rubert2_sentiment(text):
result = rubert2(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts: # always show seconds if it's the only non-zero value
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
st.stop()
original_news_count = len(df)
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
st.write("Начинаем предобработку и анализ текстов...")
texts = df['Выдержки из текста'].tolist()
texts = [str(text) if not pd.isna(text) else "" for text in texts]
lemmatized_texts = [lemmatize_text(text) for text in texts]
translated_texts = batch_translate(lemmatized_texts)
df['Translated'] = translated_texts
# Perform sentiment analysis
df['ruBERT2'] = [get_rubert2_sentiment(text) for text in texts]
df['FinBERT'] = [get_finbert_sentiment(text) for text in translated_texts]
df['RoBERTa'] = [get_roberta_sentiment(text) for text in translated_texts]
df['FinBERT-Tone'] = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Initialize LLM
llm = init_langchain_llm()
if not llm:
st.error("Не удалось инициализировать нейросеть. Пожалуйста, проверьте настройки и попробуйте снова.")
st.stop()
# Perform LLM analysis
df['LLM_Impact'] = ''
df['LLM_Reasoning'] = ''
progress_bar = st.progress(0)
status_text = st.empty()
for index, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
impact, reasoning = estimate_impact(llm, row['Translated'], row['Объект'])
df.at[index, 'LLM_Impact'] = impact
df.at[index, 'LLM_Reasoning'] = reasoning
st.write(f"Объект: {row['Объект']}")
st.write(f"Новость: {row['Заголовок']}")
st.write(f"Эффект: {impact}")
st.write(f"Обоснование: {reasoning}")
st.write("---")
progress = (index + 1) / len(df)
progress_bar.progress(progress)
status_text.text(f"Проанализировано {index + 1} из {len(df)} новостей")
progress_bar.empty()
status_text.empty()
visualization = generate_sentiment_visualization(df)
if visualization:
st.pyplot(visualization)
return df
def create_output_file(df, uploaded_file, analysis_df):
# Load the sample file to use as a template
wb = load_workbook("sample_file.xlsx")
# Process data for 'Сводка' sheet
entities = df['Объект'].unique()
summary_data = []
for entity in entities:
entity_df = df[df['Объект'] == entity]
total_news = len(entity_df)
negative_news = sum((entity_df['FinBERT'] == 'Negative') |
(entity_df['RoBERTa'] == 'Negative') |
(entity_df['FinBERT-Tone'] == 'Negative'))
positive_news = sum((entity_df['FinBERT'] == 'Positive') |
(entity_df['RoBERTa'] == 'Positive') |
(entity_df['FinBERT-Tone'] == 'Positive'))
summary_data.append([entity, total_news, negative_news, positive_news])
summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
summary_df = summary_df.sort_values('Отрицательные', ascending=False)
# Write 'Сводка' sheet
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Process data for 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], '', sentiment, '', row['Заголовок'], row['Выдержки из текста']])
# Write 'Значимые' sheet
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Write 'Анализ' sheet
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Save the workbook to a BytesIO object
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def generate_sentiment_visualization(df):
# Filter for negative sentiments
negative_df = df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Negative').any(axis=1)]
if negative_df.empty:
st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.")
entity_counts = df['Объект'].value_counts()
else:
entity_counts = negative_df['Объект'].value_counts()
if len(entity_counts) == 0:
st.warning("Нет данных для визуализации.")
return None
if len(entity_counts) == 1:
st.warning("Обнаружен только один объект. Отображаем статистику в виде столбчатой диаграммы.")
fig, ax = plt.subplots()
entity_counts.plot(kind='bar', ax=ax)
ax.set_title('Количество упоминаний объекта')
ax.set_ylabel('Количество упоминаний')
plt.tight_layout()
return fig
if len(entity_counts) <= 5:
st.info("Обнаружено малое количество объектов. Отображаем статистику в виде столбчатой диаграммы.")
fig, ax = plt.subplots(figsize=(10, 5))
entity_counts.plot(kind='bar', ax=ax)
ax.set_title('Количество упоминаний объектов')
ax.set_ylabel('Количество упоминаний')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
return fig
# If we have enough data, create a word cloud
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(entity_counts)
fig, ax = plt.subplots(figsize=(10, 5))
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
ax.set_title('Облако слов: Объекты с негативными упоминаниями' if not negative_df.empty else 'Облако слов: Все упоминания объектов')
return fig
def main():
st.title("... приступим к анализу... версия 70")
# Initialize session state
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
st.session_state.processed_df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
st.write(st.session_state.processed_df.head())
analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Анализ")
st.dataframe(analysis_df)
output = create_output_file_with_llm(st.session_state.processed_df, uploaded_file, analysis_df)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка и анализ завершены за {formatted_time}.")
st.download_button(
label="Скачать результат анализа новостей с оценкой нейросети",
data=output,
file_name="результат_анализа_с_нейросетью.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main()