processor / app.py
pentarosarium's picture
progress more 23
a54e432
raw
history blame
7.06 kB
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
#from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
sberubert = pipeline("sentiment-analysis", model = "ai-forever/ruBert-base")
# Function for lemmatizing Russian text
def lemmatize_text(text):
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Calculate max_length based on input length (you may need to adjust this ratio)
input_length = inputs.input_ids.shape[1]
max_length = min(512, int(input_length * 1.5))
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
max_length=max_length,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def get_sberubert_sentiment(text):
result = sberubert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
original_news_count = len(df)
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Translate texts
translated_texts = []
progress_bar = st.progress(0)
progress_text = st.empty()
total_news = len(df)
texts = df['Выдержки из текста'].tolist()
for i, text in enumerate(df['Выдержки из текста']):
translated_text = translate(str(lemmatize_text(text)))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
progress_text.text(f"{i + 1} из {total_news} сообщений переведено")
# Perform sentiment analysis
rubert_results = [get_sberubert_sentiment(text) for text in texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Add results to DataFrame
df['ruBERT'] = rubert_results
df['FinBERT'] = finbert_results
df['RoBERTa'] = roberta_results
df['FinBERT-Tone'] = finbert_tone_results
df['Translated'] = translated_texts
# Reorder columns
columns_order = ['Объект', 'ruBERT', 'FinBERT', 'RoBERTa', 'FinBERT-Tone', 'Выдержки из текста', 'Translated' ]
df = df[columns_order]
return df
def main():
st.title("... приступим к анализу... версия 23")
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None:
df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
st.write(df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['ruBERT', 'FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
# Offer download of results
output = io.BytesIO()
with pd.ExcelWriter(output, engine='openpyxl') as writer:
df.to_excel(writer, index=False)
output.seek(0)
st.download_button(
label="Хотите загрузить результат? Вот он",
data=output,
file_name="sentiment_analysis_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main()