File size: 6,649 Bytes
7e14e6f
 
 
 
fa80eae
2d683e0
7e14e6f
 
 
 
7e40c67
 
f6e9269
7e14e6f
d851af8
 
7e14e6f
d851af8
 
 
 
 
 
 
 
f6e9269
 
 
 
 
 
d851af8
 
 
2d683e0
 
 
 
d851af8
 
f6e9269
 
 
7e40c67
 
 
 
 
 
fa80eae
7e40c67
 
 
 
 
 
f6e9269
 
 
 
d851af8
7e40c67
 
d851af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e14e6f
 
 
 
 
fa80eae
 
7e14e6f
fa80eae
 
7e14e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d683e0
7e14e6f
2d683e0
7e14e6f
 
 
 
2d683e0
7e14e6f
 
2d683e0
7e14e6f
2d683e0
7e14e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d683e0
7e14e6f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
#from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch

# Initialize pymystem3 for lemmatization
mystem = Mystem()

# Set up the sentiment analyzers
vader_analyzer = SentimentIntensityAnalyzer()
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")

# Function for lemmatizing Russian text
def lemmatize_text(text):
    words = text.split()
    lemmatized_words = []
    for word in tqdm(words, desc="Lemmatizing", unit="word"):
        lemmatized_word = ''.join(mystem.lemmatize(word))
        lemmatized_words.append(lemmatized_word)
    return ' '.join(lemmatized_words)

# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")

def translate(text):
    # Tokenize the input text
    inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
    
    # Set up a simple spinner
    with tqdm(total=0, bar_format='{desc}', desc="Translating...") as pbar:
        # Generate translation
        translated_tokens = translation_model.generate(
            **inputs,
            num_beams=5,
            max_length=len(text.split()) * 2,  # Adjust as needed
            no_repeat_ngram_size=2,
            early_stopping=True
        )
        
        # Update the spinner description to show completion
        pbar.set_description_str("Translation completed")
    
    # Decode the translated tokens
    translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
    return translated_text



# Function for VADER sentiment analysis with label mapping
def get_vader_sentiment(text):
    score = vader_analyzer.polarity_scores(text)["compound"]
    if score > 0.2:
        return "Positive"
    elif score < -0.2:
        return "Negative"
    return "Neutral"

# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
    label = result['label'].lower()
    if label in ["positive", "label_2", "pos", "pos_label"]:
        return "Positive"
    elif label in ["negative", "label_0", "neg", "neg_label"]:
        return "Negative"
    return "Neutral"

def get_finbert_sentiment(text):
    result = finbert(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_roberta_sentiment(text):
    result = roberta(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_finbert_tone_sentiment(text):
    result = finbert_tone(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
    seen_texts = []
    indices_to_keep = []
    for i, text in enumerate(df[column]):
        if pd.isna(text):
            indices_to_keep.append(i)
            continue
        text = str(text)
        if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
            seen_texts.append(text)
            indices_to_keep.append(i)
    return df.iloc[indices_to_keep]


def process_file(uploaded_file):
    df = pd.read_excel(uploaded_file, sheet_name='Публикации')
    


    # Apply fuzzy deduplication
    df = df.groupby('Объект', group_keys=False).apply(lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)).reset_index(drop=True)
        
    # Translate texts
    translated_texts = []
    progress_bar = st.progress(0)
    for i, text in enumerate(df['Выдержки из текста']):
        translated_text = translate(str(text))
        translated_texts.append(translated_text)
        progress_bar.progress((i + 1) / len(df))
    
    # Perform sentiment analysis
    vader_results = [get_vader_sentiment(text) for text in translated_texts]
    finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
    roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
    finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
    
    # Add results to DataFrame
    df['VADER'] = vader_results
    df['FinBERT'] = finbert_results
    df['RoBERTa'] = roberta_results
    df['FinBERT-Tone'] = finbert_tone_results
    
    # Reorder columns
    columns_order = ['Объект', 'VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone', 'Выдержки из текста']
    df = df[columns_order]
    
    return df

def main():
    st.title("... приступим к анализу...")
    
    uploaded_file = st.file_uploader("ВЫБИРАЙТЕ EXCEL-файл", type="xlsx")
    
    if uploaded_file is not None:
        df = process_file(uploaded_file)
        
        st.subheader("Предпросмотр данных")
        st.write(df.head())
        
        st.subheader("Распределение окраски")
        fig, axs = plt.subplots(2, 2, figsize=(12, 8))
        fig.suptitle("Распределение окраски по моделям")
        
        models = ['VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone']
        for i, model in enumerate(models):
            ax = axs[i // 2, i % 2]
            sentiment_counts = df[model].value_counts()
            sentiment_counts.plot(kind='bar', ax=ax)
            ax.set_title(f"{model} Sentiment")
            ax.set_xlabel("Sentiment")
            ax.set_ylabel("Count")
        
        plt.tight_layout()
        st.pyplot(fig)
        
        # Offer download of results
        output = io.BytesIO()
        with pd.ExcelWriter(output, engine='openpyxl') as writer:
            df.to_excel(writer, index=False)
        output.seek(0)
        st.download_button(
            label="Хотите загрузить результат? Вот он",
            data=output,
            file_name="sentiment_analysis_results.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

if __name__ == "__main__":
    main()