Spaces:
Running
Running
File size: 6,649 Bytes
7e14e6f fa80eae 2d683e0 7e14e6f 7e40c67 f6e9269 7e14e6f d851af8 7e14e6f d851af8 f6e9269 d851af8 2d683e0 d851af8 f6e9269 7e40c67 fa80eae 7e40c67 f6e9269 d851af8 7e40c67 d851af8 7e14e6f fa80eae 7e14e6f fa80eae 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
#from transformers import MarianMTModel, MarianTokenizer
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
vader_analyzer = SentimentIntensityAnalyzer()
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
# Function for lemmatizing Russian text
def lemmatize_text(text):
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Set up a simple spinner
with tqdm(total=0, bar_format='{desc}', desc="Translating...") as pbar:
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
num_beams=5,
max_length=len(text.split()) * 2, # Adjust as needed
no_repeat_ngram_size=2,
early_stopping=True
)
# Update the spinner description to show completion
pbar.set_description_str("Translation completed")
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Function for VADER sentiment analysis with label mapping
def get_vader_sentiment(text):
score = vader_analyzer.polarity_scores(text)["compound"]
if score > 0.2:
return "Positive"
elif score < -0.2:
return "Negative"
return "Neutral"
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
# Apply fuzzy deduplication
df = df.groupby('Объект', group_keys=False).apply(lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)).reset_index(drop=True)
# Translate texts
translated_texts = []
progress_bar = st.progress(0)
for i, text in enumerate(df['Выдержки из текста']):
translated_text = translate(str(text))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
# Perform sentiment analysis
vader_results = [get_vader_sentiment(text) for text in translated_texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Add results to DataFrame
df['VADER'] = vader_results
df['FinBERT'] = finbert_results
df['RoBERTa'] = roberta_results
df['FinBERT-Tone'] = finbert_tone_results
# Reorder columns
columns_order = ['Объект', 'VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone', 'Выдержки из текста']
df = df[columns_order]
return df
def main():
st.title("... приступим к анализу...")
uploaded_file = st.file_uploader("ВЫБИРАЙТЕ EXCEL-файл", type="xlsx")
if uploaded_file is not None:
df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
st.write(df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['VADER', 'FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
# Offer download of results
output = io.BytesIO()
with pd.ExcelWriter(output, engine='openpyxl') as writer:
df.to_excel(writer, index=False)
output.seek(0)
st.download_button(
label="Хотите загрузить результат? Вот он",
data=output,
file_name="sentiment_analysis_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |