Spaces:
Running
Running
File size: 13,166 Bytes
7e14e6f 1254c79 7e14e6f 03eddb7 4673e91 03eddb7 261f952 367d42f a87d6f0 1075b3f 03eddb7 7e14e6f 03eddb7 45f1473 03eddb7 fe6b622 a87d6f0 aebf0a2 a87d6f0 1254c79 a87d6f0 fe6b622 a87d6f0 aebf0a2 1254c79 aebf0a2 a87d6f0 aebf0a2 a87d6f0 9e97a7c 03eddb7 9e97a7c 03eddb7 9e97a7c a87d6f0 9e97a7c a87d6f0 9e97a7c a87d6f0 aebf0a2 0d683d7 a87d6f0 aebf0a2 a87d6f0 aebf0a2 a87d6f0 0d683d7 aebf0a2 a87d6f0 aebf0a2 a87d6f0 aebf0a2 0d683d7 a87d6f0 3cedc42 0d683d7 9e97a7c 03eddb7 bc222e3 aebf0a2 9e97a7c a87d6f0 aebf0a2 bc222e3 aebf0a2 bc222e3 9e97a7c a87d6f0 9e97a7c a87d6f0 9e97a7c a87d6f0 9e97a7c 4673e91 7e14e6f bc222e3 03eddb7 bc222e3 a87d6f0 45f1473 7e14e6f c289d70 7e14e6f 45f1473 c58ea62 45f1473 7e14e6f 2d683e0 03eddb7 0d683d7 d7392b8 0d683d7 45f1473 03eddb7 c58ea62 261f952 0d683d7 d7392b8 7e14e6f 03eddb7 7e14e6f 03eddb7 45f1473 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import streamlit as st
import pandas as pd
import time
import matplotlib.pyplot as plt
from openpyxl.utils.dataframe import dataframe_to_rows
import io
from rapidfuzz import fuzz
import os
from openpyxl import load_workbook
from langchain_community.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from transformers import pipeline
# Initialize sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
def translate_text(llm, text):
template = """
Translate this Russian text into English:
"{text}"
Your response should contain only the English translation.
"""
prompt = PromptTemplate(template=template, input_variables=["text"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"text": text})
return response.strip()
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def analyze_sentiment(text):
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0])
finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0])
# Consider sentiment negative if any model says it's negative
if any(result == "Negative" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Negative"
elif all(result == "Positive" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Positive"
return "Neutral"
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def init_langchain_llm():
try:
if 'groq_key' in st.secrets:
groq_api_key = st.secrets['groq_key']
else:
st.error("Groq API key not found in Hugging Face secrets. Please add it with the key 'groq_key'.")
st.stop()
llm = ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
api_key=groq_api_key,
temperature=0.0
)
return llm
except Exception as e:
st.error(f"Error initializing the Groq LLM: {str(e)}")
st.stop()
def estimate_impact(llm, news_text, entity):
template = """
Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months.
If precise monetary estimate is not possible, categorize the impact as one of the following:
1. "Значительный риск убытков"
2. "Умеренный риск убытков"
3. "Незначительный риск убытков"
4. "Вероятность прибыли"
5. "Неопределенный эффект"
Provide brief reasoning (maximum 100 words).
News: {news}
Your response should be in the following format:
Impact: [Your estimate or category]
Reasoning: [Your reasoning]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"entity": entity, "news": news_text})
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
if isinstance(response, str):
try:
if "Impact:" in response and "Reasoning:" in response:
impact_part, reasoning_part = response.split("Reasoning:")
impact = impact_part.split("Impact:")[1].strip()
reasoning = reasoning_part.strip()
except Exception as e:
st.error(f"Error parsing LLM response: {str(e)}")
return impact, reasoning
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts:
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def generate_sentiment_visualization(df):
negative_df = df[df['Sentiment'] == 'Negative']
if negative_df.empty:
st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.")
entity_counts = df['Объект'].value_counts()
else:
entity_counts = negative_df['Объект'].value_counts()
if len(entity_counts) == 0:
st.warning("Нет данных для визуализации.")
return None
fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5)))
entity_counts.plot(kind='barh', ax=ax)
ax.set_title('Количество негативных упоминаний по объектам')
ax.set_xlabel('Количество упоминаний')
plt.tight_layout()
return fig
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
st.stop()
# Initialize LLM
llm = init_langchain_llm()
if not llm:
st.error("Не удалось инициализировать нейросеть. Пожалуйста, проверьте настройки и попробуйте снова.")
st.stop()
# Deduplication
original_news_count = len(df)
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Initialize progress
progress_bar = st.progress(0)
status_text = st.empty()
# Process each news item
df['Translated'] = ''
df['Sentiment'] = ''
df['Impact'] = ''
df['Reasoning'] = ''
for index, row in df.iterrows():
# First: Translate
translated_text = translate_text(llm, row['Выдержки из текста'])
df.at[index, 'Translated'] = translated_text
# Second: Analyze sentiment
sentiment = analyze_sentiment(translated_text)
df.at[index, 'Sentiment'] = sentiment
# Third: If negative, estimate impact
if sentiment == "Negative":
impact, reasoning = estimate_impact(llm, translated_text, row['Объект'])
df.at[index, 'Impact'] = impact
df.at[index, 'Reasoning'] = reasoning
# Update progress
progress = (index + 1) / len(df)
progress_bar.progress(progress)
status_text.text(f"Проанализировано {index + 1} из {len(df)} новостей")
# Display results
st.write(f"Объект: {row['Объект']}")
st.write(f"Новость: {row['Заголовок']}")
st.write(f"Тональность: {sentiment}")
if sentiment == "Negative":
st.write(f"Эффект: {impact}")
st.write(f"Обоснование: {reasoning}")
st.write("---")
progress_bar.empty()
status_text.empty()
# Generate visualization
visualization = generate_sentiment_visualization(df)
if visualization:
st.pyplot(visualization)
return df
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if row['Sentiment'] == 'Negative':
analysis_data.append([
row['Объект'],
row['Заголовок'],
'РИСК УБЫТКА',
row['Impact'],
row['Reasoning'],
row['Выдержки из текста']
])
return pd.DataFrame(analysis_data, columns=[
'Объект',
'Заголовок',
'Признак',
'Оценка влияния',
'Обоснование',
'Текст сообщения'
])
def create_output_file(df, uploaded_file):
wb = load_workbook("sample_file.xlsx")
# Update 'Сводка' sheet
summary_df = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего новостей': df.groupby('Объект').size(),
'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int),
'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int),
'Преобладающий эффект': df.groupby('Объект')['Impact'].agg(
lambda x: x.value_counts().index[0] if len(x) > 0 else 'Неопределенный'
)
})
summary_df = summary_df.sort_values('Негативные', ascending=False)
# Write sheets...
# (keep existing code for writing sheets)
# Update 'Тех.приложение' sheet to include translated text
tech_df = df[['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']]
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def main():
st.markdown(
"""
<style>
.signature {
position: fixed;
right: 12px;
bottom: 12px;
font-size: 14px;
color: #FF0000;
opacity: 0.9;
z-index: 999;
}
</style>
<div class="signature">denis.pokrovsky.npff</div>
""",
unsafe_allow_html=True
)
st.title("::: анализ мониторинга новостей СКАН-ИНТЕРФАКС (2):::")
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
st.session_state.processed_df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
preview_df = st.session_state.processed_df[['Объект', 'Заголовок', 'Sentiment', 'Impact']].head()
st.dataframe(preview_df)
analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Анализ")
st.dataframe(analysis_df)
output = create_output_file(st.session_state.processed_df, uploaded_file)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка и анализ завершены за {formatted_time}.")
st.download_button(
label="Скачать результат анализа",
data=output,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |