Spaces:
Running
Running
File size: 19,580 Bytes
7e14e6f fa80eae 7e14e6f 7e40c67 9e97a7c f6e9269 4673e91 d7392b8 55c5135 261f952 7e14e6f d851af8 7e14e6f d851af8 9e97a7c d851af8 9e97a7c 45f1473 9e97a7c 7710faa 261f952 45f1473 261f952 45f1473 261f952 9e97a7c 4673e91 7e14e6f 9e97a7c 45f1473 7e14e6f c289d70 7e14e6f 45f1473 c58ea62 45f1473 7e14e6f 2d683e0 45f1473 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 4673e91 7e14e6f 45f1473 7e14e6f 45f1473 d7392b8 45f1473 c58ea62 261f952 d7392b8 7e14e6f 4673e91 7e14e6f 4673e91 7e14e6f 261f952 45f1473 261f952 45f1473 261f952 45f1473 261f952 45f1473 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
from openpyxl import load_workbook
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from sentiment_decorators import sentiment_analysis_decorator
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")
def init_langchain_llm():
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
llm = HuggingFacePipeline(pipeline=pipe)
return llm
def init_langchain_llm():
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
llm = HuggingFacePipeline(pipeline=pipe)
return llm
def estimate_impact(llm, news_text):
template = """
Analyze the following news piece and estimate its monetary impact in Russian rubles for the next 6 months.
If a monetary estimate is not possible, categorize the impact as "Значительный", "Незначительный", or "Неопределенный".
Also provide a short reasoning (max 100 words) for your assessment.
News: {news}
Estimated Impact:
Reasoning:
"""
prompt = PromptTemplate(template=template, input_variables=["news"])
chain = LLMChain(llm=llm, prompt=prompt)
response = chain.run(news=news_text)
impact, reasoning = response.split("Reasoning:")
impact = impact.strip()
reasoning = reasoning.strip()
return impact, reasoning
def process_file_with_llm(df, llm):
df['LLM_Impact'] = ''
df['LLM_Reasoning'] = ''
for index, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
impact, reasoning = estimate_impact(llm, row['Translated']) # Use translated text
df.at[index, 'LLM_Impact'] = impact
df.at[index, 'LLM_Reasoning'] = reasoning
return df
def create_output_file_with_llm(df, uploaded_file, analysis_df):
wb = load_workbook("sample_file.xlsx")
# Update 'Сводка' sheet
summary_df = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего новостей': df.groupby('Объект').size(),
'Отрицательные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Negative').any(axis=1)].groupby('Объект').size(),
'Положительные': df[df[['FinBERT', 'RoBERTa', 'FinBERT-Tone']].eq('Positive').any(axis=1)].groupby('Объект').size(),
'Impact': df.groupby('Объект')['LLM_Impact'].agg(lambda x: x.value_counts().index[0] if x.any() else 'Неопределенный')
})
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], 'релевантен', sentiment, row['LLM_Impact'], row['Заголовок'], row['Выдержки из текста']])
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Анализ' sheet
analysis_df['LLM_Reasoning'] = df['LLM_Reasoning']
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
analysis_data.append([row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', '', row['Выдержки из текста']])
return pd.DataFrame(analysis_data, columns=['Объект', 'Заголовок', 'Признак', 'Пояснение', 'Текст сообщения'])
# Function for lemmatizing Russian text
def lemmatize_text(text):
if pd.isna(text):
return ""
if not isinstance(text, str):
text = str(text)
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Calculate max_length based on input length
input_length = inputs.input_ids.shape[1]
max_length = max(input_length + 10, int(input_length * 1.5)) # Ensure at least 10 new tokens
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
max_new_tokens=max_length, # Use max_new_tokens instead of max_length
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
@sentiment_analysis_decorator
def get_rubert1_sentiment(text):
result = rubert1(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_rubert2_sentiment(text):
result = rubert2(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
@sentiment_analysis_decorator
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts: # always show seconds if it's the only non-zero value
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
st.stop()
original_news_count = len(df)
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Translate texts
translated_texts = []
lemmatized_texts = []
progress_bar = st.progress(0)
progress_text = st.empty()
total_news = len(df)
texts = df['Выдержки из текста'].tolist()
# Data validation
texts = [str(text) if not pd.isna(text) else "" for text in texts]
for text in df['Выдержки из текста']:
lemmatized_texts.append(lemmatize_text(text))
for i, text in enumerate(lemmatized_texts):
translated_text = translate(str(text))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
# Perform sentiment analysis
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Create a new DataFrame with processed data
processed_df = pd.DataFrame({
'Объект': df['Объект'],
'Заголовок': df['Заголовок'], # Preserve original 'Заголовок'
'ruBERT2': rubert2_results,
'FinBERT': finbert_results,
'RoBERTa': roberta_results,
'FinBERT-Tone': finbert_tone_results,
'Выдержки из текста': df['Выдержки из текста'],
'Translated': translated_texts
})
return processed_df
def create_output_file(df, uploaded_file, analysis_df):
# Load the sample file to use as a template
wb = load_workbook("sample_file.xlsx")
# Process data for 'Сводка' sheet
entities = df['Объект'].unique()
summary_data = []
for entity in entities:
entity_df = df[df['Объект'] == entity]
total_news = len(entity_df)
negative_news = sum((entity_df['FinBERT'] == 'Negative') |
(entity_df['RoBERTa'] == 'Negative') |
(entity_df['FinBERT-Tone'] == 'Negative'))
positive_news = sum((entity_df['FinBERT'] == 'Positive') |
(entity_df['RoBERTa'] == 'Positive') |
(entity_df['FinBERT-Tone'] == 'Positive'))
summary_data.append([entity, total_news, negative_news, positive_news])
summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
summary_df = summary_df.sort_values('Отрицательные', ascending=False)
# Write 'Сводка' sheet
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Process data for 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], '', sentiment, '', row['Заголовок'], row['Выдержки из текста']])
# Write 'Значимые' sheet
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Write 'Анализ' sheet
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Save the workbook to a BytesIO object
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def main():
st.title("... приступим к анализу... версия 46")
# Initialize session state
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
if 'analysis_df' not in st.session_state:
st.session_state.analysis_df = None
if 'llm_analyzed' not in st.session_state:
st.session_state.llm_analyzed = False
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
st.session_state.processed_df = process_file(uploaded_file)
st.session_state.analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Предпросмотр данных")
st.write(st.session_state.processed_df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = st.session_state.processed_df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
st.subheader("Анализ")
st.dataframe(st.session_state.analysis_df)
output = create_output_file(st.session_state.processed_df, uploaded_file, st.session_state.analysis_df)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка завершена за {formatted_time}.")
st.download_button(
label="Скачать результат анализа новостей",
data=output,
file_name="результат_анализа_новостей.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if st.session_state.processed_df is not None and not st.session_state.llm_analyzed:
if st.button("Что скажет нейросеть?"):
st.info("Анализ нейросетью начался. Это может занять некоторое время...")
llm = init_langchain_llm()
df_with_llm = process_file_with_llm(st.session_state.processed_df, llm)
output_with_llm = create_output_file_with_llm(df_with_llm, uploaded_file, st.session_state.analysis_df)
st.success("Анализ нейросетью завершен!")
st.session_state.llm_analyzed = True
st.session_state.output_with_llm = output_with_llm
if st.session_state.llm_analyzed:
st.download_button(
label="Скачать результат анализа с оценкой нейросети",
data=st.session_state.output_with_llm,
file_name="результат_анализа_с_нейросетью.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |