File size: 11,978 Bytes
7e14e6f
 
 
 
fa80eae
7e14e6f
 
 
 
7e40c67
 
f6e9269
4673e91
d7392b8
 
7e14e6f
d851af8
 
7e14e6f
d851af8
55dd648
d851af8
 
 
7710faa
 
 
d7392b8
 
 
 
f8fa791
80d50c2
d7392b8
d851af8
 
5037fb3
 
 
 
 
 
f6e9269
 
 
 
 
5037fb3
d851af8
 
 
2d683e0
 
 
 
d851af8
 
f6e9269
 
 
2e78fc6
d55667a
 
2e78fc6
d55667a
2e78fc6
 
 
 
 
d55667a
2e78fc6
 
f6e9269
 
 
d851af8
7e40c67
d851af8
 
 
 
 
 
 
 
 
7710faa
1f7c3c7
55dd648
 
7710faa
1f7c3c7
7710faa
55dd648
d851af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e14e6f
 
 
 
 
0b49979
 
 
 
 
 
b4b8d2a
 
7e14e6f
ba5ad5d
c289d70
 
7e00fac
 
 
 
 
 
7e14e6f
 
9fd374e
7e14e6f
4a13453
c289d70
 
a54e432
 
bc1927c
9fd374e
bc1927c
9fd374e
 
7e14e6f
 
1bb22de
7e14e6f
 
7710faa
7e14e6f
 
 
 
0b49979
 
 
 
 
 
 
 
 
 
 
7e14e6f
0b49979
7e14e6f
d7392b8
c8cc09f
 
d7392b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4673e91
d7392b8
c8cc09f
 
 
 
d7392b8
 
f8fa791
d7392b8
 
 
 
f8fa791
d7392b8
 
c8cc09f
 
 
 
d7392b8
 
c8cc09f
 
 
 
d7392b8
 
 
c8cc09f
 
 
 
d7392b8
 
c8cc09f
 
 
 
 
 
d7392b8
 
 
 
4673e91
d7392b8
4673e91
 
7e14e6f
5037fb3
7e14e6f
c289d70
7e14e6f
 
 
 
2d683e0
7e14e6f
 
2d683e0
7e14e6f
2d683e0
7e14e6f
4673e91
7e14e6f
 
 
 
 
 
 
 
 
 
d7392b8
 
 
 
 
7e14e6f
8c530ad
7e14e6f
4673e91
7e14e6f
4673e91
7e14e6f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
from openpyxl import load_workbook
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows

# Initialize pymystem3 for lemmatization
mystem = Mystem()

# Set up the sentiment analyzers

finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")

def create_analysis_data(df):
    analysis_data = []
    for _, row in df.iterrows():
        if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
            analysis_data.append([row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', '', row['Выдержки из текста']])
    return pd.DataFrame(analysis_data, columns=['Объект', 'Заголовок', 'Признак', 'Материальность', 'Текст сообщения'])

# Function for lemmatizing Russian text
def lemmatize_text(text):
    if pd.isna(text):
        return ""
    
    if not isinstance(text, str):
        text = str(text)
    
    words = text.split()
    lemmatized_words = []
    for word in tqdm(words, desc="Lemmatizing", unit="word"):
        lemmatized_word = ''.join(mystem.lemmatize(word))
        lemmatized_words.append(lemmatized_word)
    return ' '.join(lemmatized_words)    

# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")

def translate(text):
    # Tokenize the input text
    inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
    
    # Calculate max_length based on input length (you may need to adjust this ratio)
    input_length = inputs.input_ids.shape[1]
    max_length = min(512, int(input_length * 1.5))
    
    # Generate translation
    translated_tokens = translation_model.generate(
        **inputs,
        max_length=max_length,
        num_beams=5,
        no_repeat_ngram_size=2,
        early_stopping=True
    )
    
    # Decode the translated tokens
    translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
    return translated_text


# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
    label = result['label'].lower()
    if label in ["positive", "label_2", "pos", "pos_label"]:
        return "Positive"
    elif label in ["negative", "label_0", "neg", "neg_label"]:
        return "Negative"
    return "Neutral"

def get_rubert1_sentiment(text):
    result = rubert1(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_rubert2_sentiment(text):
    result = rubert2(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_finbert_sentiment(text):
    result = finbert(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_roberta_sentiment(text):
    result = roberta(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

def get_finbert_tone_sentiment(text):
    result = finbert_tone(text, truncation=True, max_length=512)[0]
    return get_mapped_sentiment(result)

#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
    seen_texts = []
    indices_to_keep = []
    for i, text in enumerate(df[column]):
        if pd.isna(text):
            indices_to_keep.append(i)
            continue
        text = str(text)
        if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
            seen_texts.append(text)
            indices_to_keep.append(i)
    return df.iloc[indices_to_keep]


def process_file(uploaded_file):
    df = pd.read_excel(uploaded_file, sheet_name='Публикации')
    
    required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
        st.stop()
    
    original_news_count = len(df)

    # Apply fuzzy deduplication
    df = df.groupby('Объект').apply(
        lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
    ).reset_index(drop=True)

    remaining_news_count = len(df)
    duplicates_removed = original_news_count - remaining_news_count

    st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")

    # Translate texts
    translated_texts = []
    lemmatized_texts = []
    progress_bar = st.progress(0)
    progress_text = st.empty()
    total_news = len(df)

    texts = df['Выдержки из текста'].tolist()

    for text in df['Выдержки из текста']: 
        lemmatized_texts.append(lemmatize_text(text))
    
    for i, text in enumerate(lemmatized_texts):
        translated_text = translate(str(text))
        translated_texts.append(translated_text)
        progress_bar.progress((i + 1) / len(df))
        progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
    
    # Perform sentiment analysis
    rubert2_results = [get_rubert2_sentiment(text) for text in texts]
    finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
    roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
    finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
    
    # Create a new DataFrame with processed data
    processed_df = pd.DataFrame({
        'Объект': df['Объект'],
        'Заголовок': df['Заголовок'],  # Preserve original 'Заголовок'
        'ruBERT2': rubert2_results,
        'FinBERT': finbert_results,
        'RoBERTa': roberta_results,
        'FinBERT-Tone': finbert_tone_results,
        'Выдержки из текста': df['Выдержки из текста'],
        'Translated': translated_texts
    })
    
    return processed_df

def create_output_file(df, uploaded_file, analysis_df):
    # Load the sample file to use as a template
    wb = load_workbook("sample_file.xlsx")
    
    # Process data for 'Сводка' sheet
    entities = df['Объект'].unique()
    summary_data = []
    for entity in entities:
        entity_df = df[df['Объект'] == entity]
        total_news = len(entity_df)
        negative_news = sum((entity_df['FinBERT'] == 'Negative') | 
                            (entity_df['RoBERTa'] == 'Negative') | 
                            (entity_df['FinBERT-Tone'] == 'Negative'))
        positive_news = sum((entity_df['FinBERT'] == 'Positive') | 
                            (entity_df['RoBERTa'] == 'Positive') | 
                            (entity_df['FinBERT-Tone'] == 'Positive'))
        summary_data.append([entity, total_news, negative_news, positive_news])
    
    summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
    summary_df = summary_df.sort_values('Отрицательные', ascending=False)
    
    # Write 'Сводка' sheet
    ws = wb['Сводка']
    for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
        for c_idx, value in enumerate(row, start=5):
            ws.cell(row=r_idx, column=c_idx, value=value)
    
    # Process data for 'Значимые' sheet
    
    significant_data = []
    for _, row in df.iterrows():
        if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
            sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
            significant_data.append([row['Объект'], '', sentiment, '', row['Заголовок'], row['Выдержки из текста']])
    
    # Write 'Значимые' sheet
    ws = wb['Значимые']
    for r_idx, row in enumerate(significant_data, start=3):
        for c_idx, value in enumerate(row, start=3):
            ws.cell(row=r_idx, column=c_idx, value=value)
    
    # Write 'Анализ' sheet
    ws = wb['Анализ']
    for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
        for c_idx, value in enumerate(row, start=5):
            ws.cell(row=r_idx, column=c_idx, value=value)
    
    # Copy 'Публикации' sheet from original uploaded file
    original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
    ws = wb['Публикации']
    for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
        for c_idx, value in enumerate(row, start=1):
            ws.cell(row=r_idx, column=c_idx, value=value)
    
    # Add 'Тех.приложение' sheet with processed data
    if 'Тех.приложение' not in wb.sheetnames:
        wb.create_sheet('Тех.приложение')
    ws = wb['Тех.приложение']
    for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
        for c_idx, value in enumerate(row, start=1):
            ws.cell(row=r_idx, column=c_idx, value=value)
    
    # Save the workbook to a BytesIO object
    output = io.BytesIO()
    wb.save(output)
    output.seek(0)
    
    return output

def main():
    st.title("... приступим к анализу... версия 40+")
    
    uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
    
    if uploaded_file is not None:
        df = process_file(uploaded_file)
        
        st.subheader("Предпросмотр данных")
        st.write(df.head())
        
        st.subheader("Распределение окраски")
        fig, axs = plt.subplots(2, 2, figsize=(12, 8))
        fig.suptitle("Распределение окраски по моделям")
        
        models = ['ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone']
        for i, model in enumerate(models):
            ax = axs[i // 2, i % 2]
            sentiment_counts = df[model].value_counts()
            sentiment_counts.plot(kind='bar', ax=ax)
            ax.set_title(f"{model} Sentiment")
            ax.set_xlabel("Sentiment")
            ax.set_ylabel("Count")
        
        plt.tight_layout()
        st.pyplot(fig)
        analysis_df = create_analysis_data(df)
        st.subheader("Анализ")
        st.dataframe(analysis_df)


        # Offer download of results
        output = create_output_file(df, uploaded_file, analysis_df)
        st.download_button(
            label="Скачать результат анализа новостей",
            data=output,
            file_name="результат_анализа_новостей.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )
if __name__ == "__main__":
    main()