Spaces:
Running
Running
File size: 11,978 Bytes
7e14e6f fa80eae 7e14e6f 7e40c67 f6e9269 4673e91 d7392b8 7e14e6f d851af8 7e14e6f d851af8 55dd648 d851af8 7710faa d7392b8 f8fa791 80d50c2 d7392b8 d851af8 5037fb3 f6e9269 5037fb3 d851af8 2d683e0 d851af8 f6e9269 2e78fc6 d55667a 2e78fc6 d55667a 2e78fc6 d55667a 2e78fc6 f6e9269 d851af8 7e40c67 d851af8 7710faa 1f7c3c7 55dd648 7710faa 1f7c3c7 7710faa 55dd648 d851af8 7e14e6f 0b49979 b4b8d2a 7e14e6f ba5ad5d c289d70 7e00fac 7e14e6f 9fd374e 7e14e6f 4a13453 c289d70 a54e432 bc1927c 9fd374e bc1927c 9fd374e 7e14e6f 1bb22de 7e14e6f 7710faa 7e14e6f 0b49979 7e14e6f 0b49979 7e14e6f d7392b8 c8cc09f d7392b8 4673e91 d7392b8 c8cc09f d7392b8 f8fa791 d7392b8 f8fa791 d7392b8 c8cc09f d7392b8 c8cc09f d7392b8 c8cc09f d7392b8 c8cc09f d7392b8 4673e91 d7392b8 4673e91 7e14e6f 5037fb3 7e14e6f c289d70 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 2d683e0 7e14e6f 4673e91 7e14e6f d7392b8 7e14e6f 8c530ad 7e14e6f 4673e91 7e14e6f 4673e91 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import streamlit as st
import pandas as pd
import time
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import matplotlib.pyplot as plt
from pymystem3 import Mystem
import io
from rapidfuzz import fuzz
from tqdm.auto import tqdm
import time
import torch
from openpyxl import load_workbook
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
# Initialize pymystem3 for lemmatization
mystem = Mystem()
# Set up the sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
analysis_data.append([row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', '', row['Выдержки из текста']])
return pd.DataFrame(analysis_data, columns=['Объект', 'Заголовок', 'Признак', 'Материальность', 'Текст сообщения'])
# Function for lemmatizing Russian text
def lemmatize_text(text):
if pd.isna(text):
return ""
if not isinstance(text, str):
text = str(text)
words = text.split()
lemmatized_words = []
for word in tqdm(words, desc="Lemmatizing", unit="word"):
lemmatized_word = ''.join(mystem.lemmatize(word))
lemmatized_words.append(lemmatized_word)
return ' '.join(lemmatized_words)
# Translation model for Russian to English
model_name = "Helsinki-NLP/opus-mt-ru-en"
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
def translate(text):
# Tokenize the input text
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
# Calculate max_length based on input length (you may need to adjust this ratio)
input_length = inputs.input_ids.shape[1]
max_length = min(512, int(input_length * 1.5))
# Generate translation
translated_tokens = translation_model.generate(
**inputs,
max_length=max_length,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the translated tokens
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return translated_text
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def get_rubert1_sentiment(text):
result = rubert1(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_rubert2_sentiment(text):
result = rubert2(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_sentiment(text):
result = finbert(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_roberta_sentiment(text):
result = roberta(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
def get_finbert_tone_sentiment(text):
result = finbert_tone(text, truncation=True, max_length=512)[0]
return get_mapped_sentiment(result)
#Fuzzy filter out similar news for the same NER
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def process_file(uploaded_file):
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
st.stop()
original_news_count = len(df)
# Apply fuzzy deduplication
df = df.groupby('Объект').apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Translate texts
translated_texts = []
lemmatized_texts = []
progress_bar = st.progress(0)
progress_text = st.empty()
total_news = len(df)
texts = df['Выдержки из текста'].tolist()
for text in df['Выдержки из текста']:
lemmatized_texts.append(lemmatize_text(text))
for i, text in enumerate(lemmatized_texts):
translated_text = translate(str(text))
translated_texts.append(translated_text)
progress_bar.progress((i + 1) / len(df))
progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
# Perform sentiment analysis
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
# Create a new DataFrame with processed data
processed_df = pd.DataFrame({
'Объект': df['Объект'],
'Заголовок': df['Заголовок'], # Preserve original 'Заголовок'
'ruBERT2': rubert2_results,
'FinBERT': finbert_results,
'RoBERTa': roberta_results,
'FinBERT-Tone': finbert_tone_results,
'Выдержки из текста': df['Выдержки из текста'],
'Translated': translated_texts
})
return processed_df
def create_output_file(df, uploaded_file, analysis_df):
# Load the sample file to use as a template
wb = load_workbook("sample_file.xlsx")
# Process data for 'Сводка' sheet
entities = df['Объект'].unique()
summary_data = []
for entity in entities:
entity_df = df[df['Объект'] == entity]
total_news = len(entity_df)
negative_news = sum((entity_df['FinBERT'] == 'Negative') |
(entity_df['RoBERTa'] == 'Negative') |
(entity_df['FinBERT-Tone'] == 'Negative'))
positive_news = sum((entity_df['FinBERT'] == 'Positive') |
(entity_df['RoBERTa'] == 'Positive') |
(entity_df['FinBERT-Tone'] == 'Positive'))
summary_data.append([entity, total_news, negative_news, positive_news])
summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
summary_df = summary_df.sort_values('Отрицательные', ascending=False)
# Write 'Сводка' sheet
ws = wb['Сводка']
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Process data for 'Значимые' sheet
significant_data = []
for _, row in df.iterrows():
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
significant_data.append([row['Объект'], '', sentiment, '', row['Заголовок'], row['Выдержки из текста']])
# Write 'Значимые' sheet
ws = wb['Значимые']
for r_idx, row in enumerate(significant_data, start=3):
for c_idx, value in enumerate(row, start=3):
ws.cell(row=r_idx, column=c_idx, value=value)
# Write 'Анализ' sheet
ws = wb['Анализ']
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
for c_idx, value in enumerate(row, start=5):
ws.cell(row=r_idx, column=c_idx, value=value)
# Copy 'Публикации' sheet from original uploaded file
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Add 'Тех.приложение' sheet with processed data
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Save the workbook to a BytesIO object
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def main():
st.title("... приступим к анализу... версия 40+")
uploaded_file = st.file_uploader("Выбирайте Excel-файл", type="xlsx")
if uploaded_file is not None:
df = process_file(uploaded_file)
st.subheader("Предпросмотр данных")
st.write(df.head())
st.subheader("Распределение окраски")
fig, axs = plt.subplots(2, 2, figsize=(12, 8))
fig.suptitle("Распределение окраски по моделям")
models = ['ruBERT2','FinBERT', 'RoBERTa', 'FinBERT-Tone']
for i, model in enumerate(models):
ax = axs[i // 2, i % 2]
sentiment_counts = df[model].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title(f"{model} Sentiment")
ax.set_xlabel("Sentiment")
ax.set_ylabel("Count")
plt.tight_layout()
st.pyplot(fig)
analysis_df = create_analysis_data(df)
st.subheader("Анализ")
st.dataframe(analysis_df)
# Offer download of results
output = create_output_file(df, uploaded_file, analysis_df)
st.download_button(
label="Скачать результат анализа новостей",
data=output,
file_name="результат_анализа_новостей.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |