Spaces:
Running
Running
File size: 22,276 Bytes
7e14e6f 1254c79 7e14e6f 03eddb7 4673e91 261f952 367d42f a87d6f0 08fb3e7 4ff6c1a a6e9232 4ff6c1a b9a262a 2e57f71 133976c 2e57f71 133976c 4cd2605 133976c 4cd2605 18fcf1b 2e57f71 4fa1abd 4cd2605 6da2a21 a87d6f0 1f0f3cb a87d6f0 1075b3f 03eddb7 7e14e6f 27bf06e 03eddb7 2541d3c 96fddb9 8275073 2541d3c 8275073 2541d3c 03eddb7 2541d3c 03eddb7 fe6b622 a87d6f0 aebf0a2 a87d6f0 1254c79 a87d6f0 fe6b622 a87d6f0 aebf0a2 1254c79 aebf0a2 1f0f3cb aebf0a2 a87d6f0 aebf0a2 1f0f3cb aebf0a2 a87d6f0 9e97a7c 03eddb7 9e97a7c 03eddb7 9e97a7c 3d9bd9c 229101e 08fb3e7 3d9bd9c 08fb3e7 229101e 08fb3e7 4cd2605 08fb3e7 a87d6f0 08fb3e7 6da2a21 08fb3e7 6da2a21 08fb3e7 6da2a21 08fb3e7 6da2a21 229101e 08fb3e7 4cd2605 133976c 229101e 133976c 9e97a7c 03eddb7 bc222e3 b9a262a 9e97a7c 4ff6c1a aebf0a2 4ff6c1a bc222e3 4ff6c1a bc222e3 4ff6c1a 9e97a7c 4ff6c1a 9e97a7c 4ff6c1a 9e97a7c 4ff6c1a b9a262a 4ff6c1a 9e97a7c a87d6f0 9e97a7c 4673e91 7e14e6f 4e276c2 229101e 510865c 27bf06e 229101e fa4f5f7 08fb3e7 5940210 08fb3e7 fa4f5f7 ec09b7b 55b2d76 45f1473 7e14e6f 229101e ec09b7b 7e14e6f 45f1473 c58ea62 229101e 3d9bd9c 6da2a21 2d683e0 03eddb7 0d683d7 d7392b8 0d683d7 45f1473 229101e b9a262a c58ea62 261f952 0d683d7 d7392b8 7e14e6f 03eddb7 7e14e6f 03eddb7 45f1473 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import streamlit as st
import pandas as pd
import time
import matplotlib.pyplot as plt
from openpyxl.utils.dataframe import dataframe_to_rows
import io
from rapidfuzz import fuzz
import os
from openpyxl import load_workbook
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from transformers import pipeline
from io import StringIO, BytesIO
import sys
import contextlib
from langchain_openai import ChatOpenAI # Updated import
import pdfkit
from jinja2 import Template
def translate_reasoning_to_russian(llm, text):
template = """
Translate this English explanation to Russian, maintaining a formal business style:
"{text}"
Your response should contain only the Russian translation.
"""
prompt = PromptTemplate(template=template, input_variables=["text"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"text": text})
# Handle different response types
if hasattr(response, 'content'):
return response.content.strip()
elif isinstance(response, str):
return response.strip()
else:
return str(response).strip()
def create_download_section(excel_data, pdf_data):
st.markdown("""
<div class="download-container">
<div class="download-header">📥 Результаты анализа доступны для скачивания:</div>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if excel_data is not None:
st.download_button(
label="📊 Скачать Excel отчет",
data=excel_data,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key="excel_download"
)
else:
st.error("Ошибка при создании Excel файла")
def display_sentiment_results(row, sentiment, impact=None, reasoning=None):
if sentiment == "Negative":
st.markdown(f"""
<div style='color: red; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
{"Эффект: " + impact + "<br>" if impact else ""}
{"Обоснование: " + reasoning + "<br>" if reasoning else ""}
</div>
""", unsafe_allow_html=True)
elif sentiment == "Positive":
st.markdown(f"""
<div style='color: green; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
</div>
""", unsafe_allow_html=True)
else:
st.write(f"Объект: {row['Объект']}")
st.write(f"Новость: {row['Заголовок']}")
st.write(f"Тональность: {sentiment}")
st.write("---")
# Initialize sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
def translate_text(llm, text):
template = """
Translate this Russian text into English:
"{text}"
Your response should contain only the English translation.
"""
prompt = PromptTemplate(template=template, input_variables=["text"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"text": text})
# Handle different response types
if hasattr(response, 'content'): # If it's an AIMessage object
return response.content.strip()
elif isinstance(response, str): # If it's a string
return response.strip()
else:
return str(response).strip() # Convert any other type to string
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def analyze_sentiment(text):
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0])
finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0])
# Consider sentiment negative if any model says it's negative
if any(result == "Negative" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Negative"
elif all(result == "Positive" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Positive"
return "Neutral"
def fuzzy_deduplicate(df, column, threshold=65):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def init_langchain_llm(model_choice):
try:
if model_choice == "Groq (llama-3.1-70b)":
if 'groq_key' not in st.secrets:
st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.")
st.stop()
return ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=st.secrets['groq_key'],
temperature=0.0
)
elif model_choice == "ChatGPT-4o":
if 'openai_key' not in st.secrets:
st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.")
st.stop()
return ChatOpenAI(
model="gpt-4o",
openai_api_key=st.secrets['openai_key'],
temperature=0.0
)
else: # NVIDIA Nemotron-70B
if 'nvapi' not in st.secrets:
st.error("NVIDIA API key not found in secrets. Please add it with the key 'nvapi'.")
st.stop()
return ChatOpenAI(
base_url="https://integrate.api.nvidia.com/v1",
model="nvidia/llama-3.1-nemotron-70b-instruct",
openai_api_key=st.secrets['nvapi'],
temperature=0.0
)
except Exception as e:
st.error(f"Error initializing the LLM: {str(e)}")
st.stop()
def estimate_impact(llm, news_text, entity):
template = """
Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months.
If precise monetary estimate is not possible, categorize the impact as one of the following:
1. "Значительный риск убытков"
2. "Умеренный риск убытков"
3. "Незначительный риск убытков"
4. "Вероятность прибыли"
5. "Неопределенный эффект"
Provide brief reasoning (maximum 100 words).
News: {news}
Your response should be in the following format:
Impact: [Your estimate or category]
Reasoning: [Your reasoning]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | llm
response = chain.invoke({"entity": entity, "news": news_text})
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
# Extract content from response
response_text = response.content if hasattr(response, 'content') else str(response)
try:
if "Impact:" in response_text and "Reasoning:" in response_text:
impact_part, reasoning_part = response_text.split("Reasoning:")
impact = impact_part.split("Impact:")[1].strip()
reasoning = reasoning_part.strip()
except Exception as e:
st.error(f"Error parsing LLM response: {str(e)}")
return impact, reasoning
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts:
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def generate_sentiment_visualization(df):
negative_df = df[df['Sentiment'] == 'Negative']
if negative_df.empty:
st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.")
entity_counts = df['Объект'].value_counts()
else:
entity_counts = negative_df['Объект'].value_counts()
if len(entity_counts) == 0:
st.warning("Нет данных для визуализации.")
return None
fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5)))
entity_counts.plot(kind='barh', ax=ax)
ax.set_title('Количество негативных упоминаний по объектам')
ax.set_xlabel('Количество упоминаний')
plt.tight_layout()
return fig
def process_file(uploaded_file, model_choice):
#output_capture = StreamlitCapture()
old_stdout = sys.stdout
#sys.stdout = output_capture
try:
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
llm = init_langchain_llm(model_choice)
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
st.stop()
# Initialize LLM
llm = init_langchain_llm(model_choice)
if not llm:
st.error("Не удалось инициализировать нейросеть. Пожалуйста, проверьте настройки и попробуйте снова.")
st.stop()
# Deduplication
original_news_count = len(df)
df = df.groupby('Объект', group_keys=False).apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Initialize progress
progress_bar = st.progress(0)
status_text = st.empty()
# Process each news item
df['Translated'] = ''
df['Sentiment'] = ''
df['Impact'] = ''
df['Reasoning'] = ''
for index, row in df.iterrows():
translated_text = translate_text(llm, row['Выдержки из текста'])
df.at[index, 'Translated'] = translated_text
sentiment = analyze_sentiment(translated_text)
df.at[index, 'Sentiment'] = sentiment
if sentiment == "Negative":
impact, reasoning = estimate_impact(llm, translated_text, row['Объект'])
df.at[index, 'Impact'] = impact
df.at[index, 'Reasoning'] = reasoning
# Update progress
progress = (index + 1) / len(df)
progress_bar.progress(progress)
status_text.text(f"Проанализировано {index + 1} из {len(df)} новостей")
# Display results with color coding
display_sentiment_results(row, sentiment,
impact if sentiment == "Negative" else None,
reasoning if sentiment == "Negative" else None)
# Generate all output files
st.write("Генерация отчета...")
# 1. Generate Excel
excel_output = create_output_file(df, uploaded_file, llm)
# 2. Generate PDF
#st.write("Создание PDF протокола...")
#pdf_data = generate_pdf_report(output_capture.texts)
# Save PDF to disk
#if pdf_data:
# with open("result.pdf", "wb") as f:
# f.write(pdf_data)
# st.success("PDF протокол сохранен как 'result.pdf'")
# Show success message
#st.success(f"✅ Обработка и анализ завершены за умеренное время.")
# Create download section
create_download_section(excel_output,"")
return df
except Exception as e:
sys.stdout = old_stdout
st.error(f"❌ Ошибка при обработке файла: {str(e)}")
raise e
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if row['Sentiment'] == 'Negative':
analysis_data.append([
row['Объект'],
row['Заголовок'],
'РИСК УБЫТКА',
row['Impact'],
row['Reasoning'],
row['Выдержки из текста']
])
return pd.DataFrame(analysis_data, columns=[
'Объект',
'Заголовок',
'Признак',
'Оценка влияния',
'Обоснование',
'Текст сообщения'
])
def create_output_file(df, uploaded_file, llm):
wb = load_workbook("sample_file.xlsx")
# Sort entities by number of negative publications
entity_stats = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего': df.groupby('Объект').size(),
'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int),
'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int)
}).sort_values('Негативные', ascending=False)
# Calculate most negative impact for each entity
entity_impacts = {}
for entity in df['Объект'].unique():
entity_df = df[df['Объект'] == entity]
negative_impacts = entity_df[entity_df['Sentiment'] == 'Negative']['Impact']
entity_impacts[entity] = negative_impacts.iloc[0] if len(negative_impacts) > 0 else 'Неопределенный эффект'
# Update 'Сводка' sheet
ws = wb['Сводка']
for idx, (entity, row) in enumerate(entity_stats.iterrows(), start=4):
ws.cell(row=idx, column=5, value=entity) # Column E
ws.cell(row=idx, column=6, value=row['Всего']) # Column F
ws.cell(row=idx, column=7, value=row['Негативные']) # Column G
ws.cell(row=idx, column=8, value=row['Позитивные']) # Column H
ws.cell(row=idx, column=9, value=entity_impacts[entity]) # Column I
# Update 'Значимые' sheet
ws = wb['Значимые']
row_idx = 3
for _, row in df.iterrows():
if row['Sentiment'] in ['Negative', 'Positive']:
ws.cell(row=row_idx, column=3, value=row['Объект']) # Column C
ws.cell(row=row_idx, column=4, value='релевантно') # Column D
ws.cell(row=row_idx, column=5, value=row['Sentiment']) # Column E
ws.cell(row=row_idx, column=6, value=row['Impact']) # Column F
ws.cell(row=row_idx, column=7, value=row['Заголовок']) # Column G
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста']) # Column H
row_idx += 1
# Copy 'Публикации' sheet
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Анализ' sheet
ws = wb['Анализ']
row_idx = 4
for _, row in df[df['Sentiment'] == 'Negative'].iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E
ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F
ws.cell(row=row_idx, column=7, value="Риск убытка") # Column G
# Translate reasoning if it exists
if pd.notna(row['Reasoning']):
translated_reasoning = translate_reasoning_to_russian(llm, row['Reasoning'])
ws.cell(row=row_idx, column=8, value=translated_reasoning) # Column H
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I
row_idx += 1
# Update 'Тех.приложение' sheet
tech_df = df[['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']]
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def main():
with st.sidebar:
st.title("::: AI-анализ мониторинга новостей (v.3.17):::")
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
model_choice = st.radio(
"Выберите модель для анализа:",
["Groq (llama-3.1-70b)", "ChatGPT-4-mini", "NVIDIA Nemotron-70B"],
key="model_selector"
)
st.markdown(
"""
Использованы технологии:
- Анализ естественного языка с помощью предтренированных нейросетей **BERT**,<br/>
- Дополнительная обработка при помощи больших языковых моделей (**LLM**),<br/>
- объединенные при помощи фреймворка **LangChain**.<br>
""",
unsafe_allow_html=True)
# Model selection is now handled in init_langchain_llm()
with st.expander("ℹ️ Инструкция"):
st.markdown("""
1. Выберите модель для анализа
2. Загрузите Excel файл с новостями <br/>
3. Дождитесь завершения анализа <br/>
4. Скачайте результаты анализа в формате Excel <br/>
""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.signature {
position: fixed;
right: 12px;
up: 12px;
font-size: 14px;
color: #FF0000;
opacity: 0.9;
z-index: 999;
}
</style>
<div class="signature">denis.pokrovsky.npff</div>
""",
unsafe_allow_html=True
)
st.title("Анализ мониторинга новостей")
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
# Single file uploader with unique key
uploaded_file = st.sidebar.file_uploader("Выбирайте Excel-файл", type="xlsx", key="unique_file_uploader")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
# Initialize LLM with selected model
llm = init_langchain_llm(model_choice)
st.session_state.processed_df = process_file(uploaded_file, model_choice)
st.subheader("Предпросмотр данных")
preview_df = st.session_state.processed_df[['Объект', 'Заголовок', 'Sentiment', 'Impact']].head()
st.dataframe(preview_df)
analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Анализ")
st.dataframe(analysis_df)
output = create_output_file(st.session_state.processed_df, uploaded_file, llm)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка и анализ завершены за {formatted_time}.")
st.download_button(
label="Скачать результат анализа",
data=output,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |