Spaces:
Sleeping
Sleeping
Commit
·
8934356
1
Parent(s):
b4a7d5f
back 2 async fix
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
|
@@ -7,15 +8,94 @@ import logging
|
|
7 |
import io
|
8 |
from rapidfuzz import fuzz
|
9 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from typing import List, Set, Tuple
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class ProcessControl:
|
17 |
def __init__(self):
|
18 |
self.stop_requested = False
|
|
|
19 |
|
20 |
def request_stop(self):
|
21 |
self.stop_requested = True
|
@@ -25,121 +105,190 @@ class ProcessControl:
|
|
25 |
|
26 |
def reset(self):
|
27 |
self.stop_requested = False
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
class EventDetector:
|
30 |
def __init__(self):
|
31 |
-
"""Initialize with device-agnostic setup"""
|
32 |
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
logger.info(f"Initializing models on device: {self.device}")
|
44 |
-
|
45 |
-
# Initialize models
|
46 |
-
self.initialize_models()
|
47 |
-
|
48 |
-
# Initialize transformer for text analysis
|
49 |
-
self.tokenizer_cluster = AutoTokenizer.from_pretrained(
|
50 |
-
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2'
|
51 |
-
)
|
52 |
-
self.model_cluster = AutoModel.from_pretrained(
|
53 |
-
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2'
|
54 |
-
).to(self.device)
|
55 |
|
|
|
56 |
self.initialized = True
|
57 |
-
logger.info("
|
58 |
|
59 |
except Exception as e:
|
60 |
logger.error(f"Error in EventDetector initialization: {str(e)}")
|
61 |
raise
|
62 |
|
63 |
-
def
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
self.translator = pipeline(
|
68 |
-
"translation",
|
69 |
-
model="Helsinki-NLP/opus-mt-ru-en",
|
70 |
-
device=self.device
|
71 |
-
)
|
72 |
-
|
73 |
-
# Initialize sentiment model
|
74 |
-
self.sentiment = pipeline(
|
75 |
-
"sentiment-analysis",
|
76 |
-
model="cardiffnlp/twitter-roberta-base-sentiment",
|
77 |
-
device=self.device
|
78 |
-
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
legacy=True
|
85 |
-
)
|
86 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
87 |
-
self.model_name
|
88 |
-
).to(self.device)
|
89 |
-
|
90 |
-
logger.info("Models loaded successfully")
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
try:
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
#
|
103 |
-
|
|
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
except Exception as e:
|
116 |
-
logger.error(f"
|
117 |
-
return
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
try:
|
127 |
-
if not
|
|
|
|
|
|
|
|
|
128 |
return ""
|
129 |
|
130 |
-
# Split into
|
131 |
max_length = 450
|
132 |
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
133 |
-
|
134 |
translated_chunks = []
|
|
|
135 |
for chunk in chunks:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
time.sleep(0.1) # Rate limiting
|
140 |
-
except Exception as e:
|
141 |
-
logger.error(f"Chunk translation error: {str(e)}")
|
142 |
-
translated_chunks.append(chunk)
|
143 |
|
144 |
return " ".join(translated_chunks)
|
145 |
|
@@ -147,35 +296,179 @@ class EventDetector:
|
|
147 |
logger.error(f"Translation error: {str(e)}")
|
148 |
return text
|
149 |
|
150 |
-
|
151 |
-
|
|
|
152 |
try:
|
153 |
-
if not
|
|
|
|
|
|
|
|
|
154 |
return "Neutral"
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
return "Positive"
|
161 |
-
|
162 |
-
return "Negative"
|
163 |
return "Neutral"
|
164 |
|
165 |
except Exception as e:
|
166 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
167 |
return "Neutral"
|
168 |
|
169 |
-
def
|
170 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
try:
|
172 |
-
|
173 |
-
|
174 |
|
175 |
-
|
176 |
-
|
177 |
|
178 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
inputs = self.tokenizer(
|
180 |
prompt,
|
181 |
return_tensors="pt",
|
@@ -184,50 +477,55 @@ class EventDetector:
|
|
184 |
max_length=512
|
185 |
).to(self.device)
|
186 |
|
187 |
-
# Generate response
|
188 |
outputs = self.model.generate(
|
189 |
**inputs,
|
190 |
-
max_length=
|
191 |
num_return_sequences=1,
|
192 |
-
do_sample=False
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
196 |
|
197 |
-
#
|
198 |
-
if
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
206 |
|
207 |
except Exception as e:
|
208 |
logger.error(f"Event detection error: {str(e)}")
|
209 |
-
return "Нет", str(e)
|
210 |
|
211 |
def cleanup(self):
|
212 |
-
"""Clean up resources"""
|
213 |
try:
|
214 |
self.model = None
|
215 |
self.translator = None
|
216 |
-
self.
|
217 |
-
|
218 |
-
|
|
|
219 |
self.initialized = False
|
220 |
-
logger.info("
|
221 |
except Exception as e:
|
222 |
-
logger.error(f"
|
223 |
|
224 |
def create_visualizations(df):
|
225 |
-
"""Create basic visualizations"""
|
226 |
if df is None or df.empty:
|
227 |
return None, None
|
228 |
|
229 |
try:
|
230 |
-
# Sentiment distribution
|
231 |
sentiments = df['Sentiment'].value_counts()
|
232 |
fig_sentiment = go.Figure(data=[go.Pie(
|
233 |
labels=sentiments.index,
|
@@ -236,7 +534,6 @@ def create_visualizations(df):
|
|
236 |
)])
|
237 |
fig_sentiment.update_layout(title="Распределение тональности")
|
238 |
|
239 |
-
# Event distribution
|
240 |
events = df['Event_Type'].value_counts()
|
241 |
fig_events = go.Figure(data=[go.Bar(
|
242 |
x=events.index,
|
@@ -248,92 +545,430 @@ def create_visualizations(df):
|
|
248 |
return fig_sentiment, fig_events
|
249 |
|
250 |
except Exception as e:
|
251 |
-
logger.error(f"Visualization error: {
|
252 |
return None, None
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
try:
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
# Read Excel file
|
261 |
-
df = pd.read_excel(file.name)
|
262 |
|
263 |
-
#
|
264 |
-
|
|
|
|
|
265 |
|
|
|
266 |
processed_rows = []
|
267 |
total = len(df)
|
268 |
|
269 |
-
# Process
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
'Текст': text[:1000]
|
283 |
-
})
|
284 |
|
285 |
-
#
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
-
#
|
289 |
-
|
290 |
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
logger.error(error_msg)
|
296 |
-
return None, None, None, error_msg
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
def create_interface():
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
306 |
|
307 |
with gr.Row():
|
308 |
file_input = gr.File(
|
309 |
label="Загрузите Excel файл",
|
310 |
-
file_types=[".xlsx"]
|
|
|
311 |
)
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
with gr.Row():
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
|
|
326 |
analyze_btn.click(
|
327 |
-
fn=
|
328 |
inputs=[file_input],
|
329 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
)
|
331 |
-
|
332 |
return app
|
333 |
|
334 |
if __name__ == "__main__":
|
335 |
app = create_interface()
|
336 |
-
app.launch(
|
337 |
-
server_name="0.0.0.0",
|
338 |
-
share=False
|
339 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
|
|
|
8 |
import io
|
9 |
from rapidfuzz import fuzz
|
10 |
import time
|
11 |
+
import os
|
12 |
+
groq_key = os.environ['groq_key']
|
13 |
+
from langchain_openai import ChatOpenAI
|
14 |
+
from langchain.prompts import PromptTemplate
|
15 |
+
from openpyxl import load_workbook
|
16 |
+
from openpyxl.utils.dataframe import dataframe_to_rows
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import numpy as np
|
19 |
+
import logging
|
20 |
from typing import List, Set, Tuple
|
21 |
|
22 |
+
def fuzzy_deduplicate(df, column, threshold=55):
|
23 |
+
"""Deduplicate rows based on fuzzy matching of text content"""
|
24 |
+
seen_texts = []
|
25 |
+
indices_to_keep = []
|
26 |
+
|
27 |
+
for i, text in enumerate(df[column]):
|
28 |
+
if pd.isna(text):
|
29 |
+
indices_to_keep.append(i)
|
30 |
+
continue
|
31 |
+
|
32 |
+
text = str(text)
|
33 |
+
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
|
34 |
+
seen_texts.append(text)
|
35 |
+
indices_to_keep.append(i)
|
36 |
+
|
37 |
+
return df.iloc[indices_to_keep]
|
38 |
+
|
39 |
logging.basicConfig(level=logging.INFO)
|
40 |
logger = logging.getLogger(__name__)
|
41 |
|
42 |
+
|
43 |
+
class GPUTaskManager:
|
44 |
+
def __init__(self, max_retries=3, retry_delay=30, cleanup_callback=None):
|
45 |
+
self.max_retries = max_retries
|
46 |
+
self.retry_delay = retry_delay
|
47 |
+
self.cleanup_callback = cleanup_callback
|
48 |
+
|
49 |
+
async def run_with_retry(self, task_func, *args, **kwargs):
|
50 |
+
"""Execute a GPU task with retry logic"""
|
51 |
+
for attempt in range(self.max_retries):
|
52 |
+
try:
|
53 |
+
return await task_func(*args, **kwargs)
|
54 |
+
except Exception as e:
|
55 |
+
if "GPU task aborted" in str(e) or "GPU quota" in str(e):
|
56 |
+
if attempt < self.max_retries - 1:
|
57 |
+
if self.cleanup_callback:
|
58 |
+
self.cleanup_callback()
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
await asyncio.sleep(self.retry_delay)
|
61 |
+
continue
|
62 |
+
raise
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def batch_process(items, batch_size=3):
|
66 |
+
"""Split items into smaller batches"""
|
67 |
+
return [items[i:i + batch_size] for i in range(0, len(items), batch_size)]
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def is_gpu_error(error):
|
71 |
+
"""Check if an error is GPU-related"""
|
72 |
+
error_msg = str(error).lower()
|
73 |
+
return any(msg in error_msg for msg in [
|
74 |
+
"gpu task aborted",
|
75 |
+
"gpu quota",
|
76 |
+
"cuda out of memory",
|
77 |
+
"device-side assert"
|
78 |
+
])
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
class ProcessControl:
|
83 |
+
def __init__(self):
|
84 |
+
self.stop_requested = False
|
85 |
+
|
86 |
+
def request_stop(self):
|
87 |
+
self.stop_requested = True
|
88 |
+
|
89 |
+
def should_stop(self):
|
90 |
+
return self.stop_requested
|
91 |
+
|
92 |
+
def reset(self):
|
93 |
+
self.stop_requested = False
|
94 |
+
|
95 |
class ProcessControl:
|
96 |
def __init__(self):
|
97 |
self.stop_requested = False
|
98 |
+
self.error = None
|
99 |
|
100 |
def request_stop(self):
|
101 |
self.stop_requested = True
|
|
|
105 |
|
106 |
def reset(self):
|
107 |
self.stop_requested = False
|
108 |
+
self.error = None
|
109 |
+
|
110 |
+
def set_error(self, error):
|
111 |
+
self.error = error
|
112 |
+
self.stop_requested = True
|
113 |
|
114 |
class EventDetector:
|
115 |
def __init__(self):
|
|
|
116 |
try:
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
logger.info(f"Initializing models on device: {device}")
|
119 |
+
|
120 |
+
# Initialize all models
|
121 |
+
self.initialize_models(device)
|
122 |
+
|
123 |
+
# Initialize transformer for declusterization
|
124 |
+
self.tokenizer_cluster = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
125 |
+
self.model_cluster = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2').to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
self.device = device
|
128 |
self.initialized = True
|
129 |
+
logger.info("All models initialized successfully")
|
130 |
|
131 |
except Exception as e:
|
132 |
logger.error(f"Error in EventDetector initialization: {str(e)}")
|
133 |
raise
|
134 |
|
135 |
+
def mean_pooling(self, model_output, attention_mask):
|
136 |
+
token_embeddings = model_output[0]
|
137 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
138 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
def encode_text(self, text):
|
141 |
+
if pd.isna(text):
|
142 |
+
text = ""
|
143 |
+
text = str(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
encoded_input = self.tokenizer_cluster(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(self.device)
|
146 |
+
with torch.no_grad():
|
147 |
+
model_output = self.model_cluster(**encoded_input)
|
148 |
+
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
|
149 |
+
return torch.nn.functional.normalize(sentence_embeddings[0], p=2, dim=0)
|
150 |
|
151 |
+
@spaces.GPU(duration=20)
|
152 |
+
def decluster_texts(self, df, text_column, similarity_threshold=0.75, time_threshold=24):
|
153 |
try:
|
154 |
+
if df.empty:
|
155 |
+
return df
|
156 |
|
157 |
+
# Sort by datetime if available
|
158 |
+
if 'datetime' in df.columns:
|
159 |
+
df = df.sort_values('datetime')
|
160 |
|
161 |
+
# Initialize lists and sets for tracking
|
162 |
+
indices_to_delete = set()
|
163 |
|
164 |
+
# Process each text
|
165 |
+
for i in df.index:
|
166 |
+
if i in indices_to_delete: # Skip if already marked for deletion
|
167 |
+
continue
|
168 |
+
|
169 |
+
text1 = df.loc[i, text_column]
|
170 |
+
if pd.isna(text1):
|
171 |
+
continue
|
172 |
+
|
173 |
+
text1_embedding = self.encode_text(text1)
|
174 |
+
current_cluster = []
|
175 |
+
|
176 |
+
# Compare with other texts
|
177 |
+
for j in df.index:
|
178 |
+
if i == j or j in indices_to_delete: # Skip same text or already marked
|
179 |
+
continue
|
180 |
+
|
181 |
+
text2 = df.loc[j, text_column]
|
182 |
+
if pd.isna(text2):
|
183 |
+
continue
|
184 |
+
|
185 |
+
# Check time difference if datetime available
|
186 |
+
if 'datetime' in df.columns:
|
187 |
+
time_diff = pd.to_datetime(df.loc[j, 'datetime']) - pd.to_datetime(df.loc[i, 'datetime'])
|
188 |
+
if abs(time_diff.total_seconds() / 3600) > time_threshold:
|
189 |
+
continue
|
190 |
+
|
191 |
+
text2_embedding = self.encode_text(text2)
|
192 |
+
similarity = torch.dot(text1_embedding, text2_embedding).item()
|
193 |
+
|
194 |
+
if similarity >= similarity_threshold:
|
195 |
+
current_cluster.append(j)
|
196 |
+
|
197 |
+
# If we found similar texts, keep the longest one
|
198 |
+
if current_cluster:
|
199 |
+
current_cluster.append(i) # Add the current text to cluster
|
200 |
+
text_lengths = df.loc[current_cluster, text_column].fillna('').str.len()
|
201 |
+
longest_text_idx = text_lengths.idxmax()
|
202 |
+
|
203 |
+
# Mark all except longest for deletion
|
204 |
+
indices_to_delete.update(set(current_cluster) - {longest_text_idx})
|
205 |
+
|
206 |
+
# Return DataFrame without deleted rows
|
207 |
+
return df.drop(index=list(indices_to_delete))
|
208 |
|
209 |
except Exception as e:
|
210 |
+
logger.error(f"Declusterization error: {str(e)}")
|
211 |
+
return df
|
212 |
+
|
213 |
+
@spaces.GPU(duration=30)
|
214 |
+
def initialize_models(self, device):
|
215 |
+
"""Initialize all models with GPU support"""
|
216 |
+
# Initialize translation model
|
217 |
+
self.translator = pipeline(
|
218 |
+
"translation",
|
219 |
+
model="Helsinki-NLP/opus-mt-ru-en",
|
220 |
+
device=device
|
221 |
+
)
|
222 |
+
|
223 |
+
self.rutranslator = pipeline(
|
224 |
+
"translation",
|
225 |
+
model="Helsinki-NLP/opus-mt-en-ru",
|
226 |
+
device=device
|
227 |
+
)
|
228 |
|
229 |
+
# Initialize sentiment models
|
230 |
+
self.finbert = pipeline(
|
231 |
+
"sentiment-analysis",
|
232 |
+
model="ProsusAI/finbert",
|
233 |
+
device=device,
|
234 |
+
truncation=True,
|
235 |
+
max_length=512
|
236 |
+
)
|
237 |
+
self.roberta = pipeline(
|
238 |
+
"sentiment-analysis",
|
239 |
+
model="cardiffnlp/twitter-roberta-base-sentiment",
|
240 |
+
device=device,
|
241 |
+
truncation=True,
|
242 |
+
max_length=512
|
243 |
+
)
|
244 |
+
self.finbert_tone = pipeline(
|
245 |
+
"sentiment-analysis",
|
246 |
+
model="yiyanghkust/finbert-tone",
|
247 |
+
device=device,
|
248 |
+
truncation=True,
|
249 |
+
max_length=512
|
250 |
+
)
|
251 |
+
|
252 |
+
# Initialize MT5 model
|
253 |
+
self.model_name = "google/mt5-small"
|
254 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
255 |
+
self.model_name,
|
256 |
+
legacy=True
|
257 |
+
)
|
258 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
|
259 |
+
|
260 |
+
# Initialize Groq
|
261 |
+
if 'groq_key':
|
262 |
+
self.groq = ChatOpenAI(
|
263 |
+
base_url="https://api.groq.com/openai/v1",
|
264 |
+
model="llama-3.1-70b-versatile",
|
265 |
+
openai_api_key=groq_key,
|
266 |
+
temperature=0.0
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
logger.warning("Groq API key not found, impact estimation will be limited")
|
270 |
+
self.groq = None
|
271 |
+
|
272 |
+
@spaces.GPU(duration=20)
|
273 |
+
def _translate_text(self, text):
|
274 |
+
"""Translate Russian text to English"""
|
275 |
try:
|
276 |
+
if not text or not isinstance(text, str):
|
277 |
+
return ""
|
278 |
+
|
279 |
+
text = text.strip()
|
280 |
+
if not text:
|
281 |
return ""
|
282 |
|
283 |
+
# Split into manageable chunks
|
284 |
max_length = 450
|
285 |
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
|
|
286 |
translated_chunks = []
|
287 |
+
|
288 |
for chunk in chunks:
|
289 |
+
result = self.translator(chunk)[0]['translation_text']
|
290 |
+
translated_chunks.append(result)
|
291 |
+
time.sleep(0.1) # Rate limiting
|
|
|
|
|
|
|
|
|
292 |
|
293 |
return " ".join(translated_chunks)
|
294 |
|
|
|
296 |
logger.error(f"Translation error: {str(e)}")
|
297 |
return text
|
298 |
|
299 |
+
@spaces.GPU(duration=20)
|
300 |
+
def analyze_sentiment(self, text):
|
301 |
+
"""Enhanced sentiment analysis with better negative detection"""
|
302 |
try:
|
303 |
+
if not text or not isinstance(text, str):
|
304 |
+
return "Neutral"
|
305 |
+
|
306 |
+
text = text.strip()
|
307 |
+
if not text:
|
308 |
return "Neutral"
|
309 |
|
310 |
+
# Get predictions with confidence scores
|
311 |
+
finbert_result = self.finbert(text)[0]
|
312 |
+
roberta_result = self.roberta(text)[0]
|
313 |
+
finbert_tone_result = self.finbert_tone(text)[0]
|
314 |
+
|
315 |
+
# Enhanced sentiment mapping with confidence thresholds
|
316 |
+
def map_sentiment(result):
|
317 |
+
label = result['label'].lower()
|
318 |
+
score = result['score']
|
319 |
+
|
320 |
+
# Higher threshold for positive to reduce false positives
|
321 |
+
if label in ['positive', 'pos', 'positive tone'] and score > 0.75:
|
322 |
+
return "Positive"
|
323 |
+
# Lower threshold for negative to catch more cases
|
324 |
+
elif label in ['negative', 'neg', 'negative tone'] and score > 0.75:
|
325 |
+
return "Negative"
|
326 |
+
# Consider high-confidence neutral predictions
|
327 |
+
elif label == 'neutral' and score > 0.8:
|
328 |
+
return "Neutral"
|
329 |
+
# Default to negative for uncertain cases in financial context
|
330 |
+
else:
|
331 |
+
return "Negative" if score > 0.4 else "Neutral"
|
332 |
|
333 |
+
# Get mapped sentiments with confidence-based logic
|
334 |
+
sentiments = [
|
335 |
+
map_sentiment(finbert_result),
|
336 |
+
map_sentiment(roberta_result),
|
337 |
+
map_sentiment(finbert_tone_result)
|
338 |
+
]
|
339 |
+
|
340 |
+
# Weighted voting - prioritize negative signals
|
341 |
+
if "Negative" in sentiments:
|
342 |
+
neg_count = sentiments.count("Negative")
|
343 |
+
if neg_count >= 2: # negative should be consensus
|
344 |
+
return "Negative"
|
345 |
+
|
346 |
+
pos_count = sentiments.count("Positive")
|
347 |
+
if pos_count >= 2: # Require stronger positive consensus
|
348 |
return "Positive"
|
349 |
+
|
|
|
350 |
return "Neutral"
|
351 |
|
352 |
except Exception as e:
|
353 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
354 |
return "Neutral"
|
355 |
|
356 |
+
def estimate_impact(self, text, entity):
|
357 |
+
"""Estimate impact using Groq for negative sentiment texts"""
|
358 |
+
try:
|
359 |
+
if not self.groq:
|
360 |
+
return "Неопределенный эффект", "Groq API недоступен"
|
361 |
+
|
362 |
+
template = """
|
363 |
+
You are a financial analyst. Analyze this news about {entity} and assess its potential impact.
|
364 |
+
|
365 |
+
News: {news}
|
366 |
+
|
367 |
+
Classify the impact into one of these categories:
|
368 |
+
1. "Значительный риск убытков" (Significant loss risk)
|
369 |
+
2. "Умеренный риск убытков" (Moderate loss risk)
|
370 |
+
3. "Незначительный риск убытков" (Minor loss risk)
|
371 |
+
4. "Вероятность прибыли" (Potential profit)
|
372 |
+
5. "Неопределенный эффект" (Uncertain effect)
|
373 |
+
|
374 |
+
Format your response exactly as:
|
375 |
+
Impact: [category]
|
376 |
+
Reasoning: [explanation in 2-3 sentences]
|
377 |
+
"""
|
378 |
+
|
379 |
+
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
|
380 |
+
chain = prompt | self.groq
|
381 |
+
|
382 |
+
response = chain.invoke({
|
383 |
+
"entity": entity,
|
384 |
+
"news": text
|
385 |
+
})
|
386 |
+
|
387 |
+
# Parse response
|
388 |
+
response_text = response.content if hasattr(response, 'content') else str(response)
|
389 |
+
|
390 |
+
if "Impact:" in response_text and "Reasoning:" in response_text:
|
391 |
+
parts = response_text.split("Reasoning:")
|
392 |
+
impact = parts[0].split("Impact:")[1].strip()
|
393 |
+
reasoning = parts[1].strip()
|
394 |
+
else:
|
395 |
+
impact = "Неопределенный эффект"
|
396 |
+
reasoning = "Не удалось определить влияние"
|
397 |
+
|
398 |
+
return impact, reasoning
|
399 |
+
|
400 |
+
except Exception as e:
|
401 |
+
logger.error(f"Impact estimation error: {str(e)}")
|
402 |
+
return "Неопределенный эффект", f"Ошибка анализа: {str(e)}"
|
403 |
+
|
404 |
+
|
405 |
+
@spaces.GPU(duration=60)
|
406 |
+
def process_text(self, text, entity):
|
407 |
+
"""Process text with Groq-driven sentiment analysis"""
|
408 |
try:
|
409 |
+
translated_text = self._translate_text(text)
|
410 |
+
initial_sentiment = self.analyze_sentiment(translated_text)
|
411 |
|
412 |
+
impact = "Неопределенный эффект"
|
413 |
+
reasoning = ""
|
414 |
|
415 |
+
# Always get Groq analysis for all texts
|
416 |
+
impact, reasoning = self.estimate_impact(translated_text, entity)
|
417 |
+
reasoning = self.rutranslator(reasoning)[0]['translation_text']
|
418 |
+
|
419 |
+
# Override sentiment based on Groq impact
|
420 |
+
final_sentiment = initial_sentiment
|
421 |
+
if impact == "Вероятность прибыли":
|
422 |
+
final_sentiment = "Positive"
|
423 |
+
|
424 |
+
event_type, event_summary = self.detect_events(text, entity)
|
425 |
+
|
426 |
+
return {
|
427 |
+
'translated_text': translated_text,
|
428 |
+
'sentiment': final_sentiment,
|
429 |
+
'impact': impact,
|
430 |
+
'reasoning': reasoning,
|
431 |
+
'event_type': event_type,
|
432 |
+
'event_summary': event_summary
|
433 |
+
}
|
434 |
+
|
435 |
+
except Exception as e:
|
436 |
+
logger.error(f"Text processing error: {str(e)}")
|
437 |
+
return {
|
438 |
+
'translated_text': '',
|
439 |
+
'sentiment': 'Neutral',
|
440 |
+
'impact': 'Неопределенный эффект',
|
441 |
+
'reasoning': f'Ошибка обработки: {str(e)}',
|
442 |
+
'event_type': 'Нет',
|
443 |
+
'event_summary': ''
|
444 |
+
}
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
@spaces.GPU(duration=20)
|
450 |
+
def detect_events(self, text, entity):
|
451 |
+
if not text or not entity:
|
452 |
+
return "Нет", "Invalid input"
|
453 |
+
|
454 |
+
try:
|
455 |
+
# Improved prompt for MT5
|
456 |
+
prompt = f"""<s>Analyze this news about {entity}:
|
457 |
+
|
458 |
+
Text: {text}
|
459 |
+
|
460 |
+
Classify this news into ONE of these categories:
|
461 |
+
1. "Отчетность" if about: financial reports, revenue, profit, EBITDA, financial results, quarterly/annual reports
|
462 |
+
2. "Суд" if about: court cases, lawsuits, arbitration, bankruptcy, legal proceedings
|
463 |
+
3. "РЦБ" if about: bonds, securities, defaults, debt restructuring, coupon payments
|
464 |
+
4. "Нет" if none of the above
|
465 |
+
|
466 |
+
Provide classification and 2-3 sentence summary focusing on key facts.
|
467 |
+
|
468 |
+
Format response exactly as:
|
469 |
+
Category: [category name]
|
470 |
+
Summary: [brief factual summary]</s>"""
|
471 |
+
|
472 |
inputs = self.tokenizer(
|
473 |
prompt,
|
474 |
return_tensors="pt",
|
|
|
477 |
max_length=512
|
478 |
).to(self.device)
|
479 |
|
|
|
480 |
outputs = self.model.generate(
|
481 |
**inputs,
|
482 |
+
max_length=200,
|
483 |
num_return_sequences=1,
|
484 |
+
do_sample=False,
|
485 |
+
temperature=0.7,
|
486 |
+
top_p=0.9,
|
487 |
+
no_repeat_ngram_size=3
|
488 |
)
|
489 |
|
490 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
491 |
|
492 |
+
# Extract category and summary
|
493 |
+
if "Category:" in response and "Summary:" in response:
|
494 |
+
parts = response.split("Summary:")
|
495 |
+
category = parts[0].split("Category:")[1].strip()
|
496 |
+
summary = parts[1].strip()
|
497 |
+
|
498 |
+
# Validate category
|
499 |
+
valid_categories = {"Отчетность", "Суд", "РЦБ", "Нет"}
|
500 |
+
category = category if category in valid_categories else "Нет"
|
501 |
+
|
502 |
+
return category, summary
|
503 |
+
|
504 |
+
return "Нет", "Could not classify event"
|
505 |
|
506 |
except Exception as e:
|
507 |
logger.error(f"Event detection error: {str(e)}")
|
508 |
+
return "Нет", f"Error in event detection: {str(e)}"
|
509 |
|
510 |
def cleanup(self):
|
511 |
+
"""Clean up GPU resources"""
|
512 |
try:
|
513 |
self.model = None
|
514 |
self.translator = None
|
515 |
+
self.finbert = None
|
516 |
+
self.roberta = None
|
517 |
+
self.finbert_tone = None
|
518 |
+
torch.cuda.empty_cache()
|
519 |
self.initialized = False
|
520 |
+
logger.info("Cleaned up GPU resources")
|
521 |
except Exception as e:
|
522 |
+
logger.error(f"Error in cleanup: {str(e)}")
|
523 |
|
524 |
def create_visualizations(df):
|
|
|
525 |
if df is None or df.empty:
|
526 |
return None, None
|
527 |
|
528 |
try:
|
|
|
529 |
sentiments = df['Sentiment'].value_counts()
|
530 |
fig_sentiment = go.Figure(data=[go.Pie(
|
531 |
labels=sentiments.index,
|
|
|
534 |
)])
|
535 |
fig_sentiment.update_layout(title="Распределение тональности")
|
536 |
|
|
|
537 |
events = df['Event_Type'].value_counts()
|
538 |
fig_events = go.Figure(data=[go.Bar(
|
539 |
x=events.index,
|
|
|
545 |
return fig_sentiment, fig_events
|
546 |
|
547 |
except Exception as e:
|
548 |
+
logger.error(f"Visualization error: {e}")
|
549 |
return None, None
|
550 |
+
|
551 |
|
552 |
+
@spaces.GPU
|
553 |
+
def process_file(file_obj):
|
554 |
try:
|
555 |
+
logger.info("Starting to read Excel file...")
|
556 |
+
df = pd.read_excel(file_obj, sheet_name='Публикации')
|
557 |
+
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
|
|
|
|
|
558 |
|
559 |
+
# Deduplication
|
560 |
+
original_count = len(df)
|
561 |
+
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
|
562 |
+
logger.info(f"Removed {original_count - len(df)} duplicate entries")
|
563 |
|
564 |
+
detector = EventDetector()
|
565 |
processed_rows = []
|
566 |
total = len(df)
|
567 |
|
568 |
+
# Process in smaller batches with quota management
|
569 |
+
BATCH_SIZE = 3 # Reduced batch size
|
570 |
+
QUOTA_WAIT_TIME = 60 # Wait time when quota is exceeded
|
571 |
+
|
572 |
+
for batch_start in range(0, total, BATCH_SIZE):
|
573 |
+
try:
|
574 |
+
batch_end = min(batch_start + BATCH_SIZE, total)
|
575 |
+
batch = df.iloc[batch_start:batch_end]
|
576 |
+
|
577 |
+
# Initialize models for batch
|
578 |
+
if not detector.initialized:
|
579 |
+
detector.initialize_models()
|
580 |
+
time.sleep(1) # Wait after initialization
|
581 |
+
|
582 |
+
for idx, row in batch.iterrows():
|
583 |
+
try:
|
584 |
+
text = str(row.get('Выдержки из текста', ''))
|
585 |
+
if not text.strip():
|
586 |
+
continue
|
587 |
+
|
588 |
+
entity = str(row.get('Объект', ''))
|
589 |
+
if not entity.strip():
|
590 |
+
continue
|
591 |
+
|
592 |
+
# Process with GPU quota management
|
593 |
+
event_type = "Нет"
|
594 |
+
event_summary = ""
|
595 |
+
sentiment = "Neutral"
|
596 |
+
|
597 |
+
try:
|
598 |
+
event_type, event_summary = detector.detect_events(text, entity)
|
599 |
+
time.sleep(1) # Wait between GPU operations
|
600 |
+
sentiment = detector.analyze_sentiment(text)
|
601 |
+
except Exception as e:
|
602 |
+
if "GPU quota" in str(e):
|
603 |
+
logger.warning("GPU quota exceeded, waiting...")
|
604 |
+
time.sleep(QUOTA_WAIT_TIME)
|
605 |
+
continue
|
606 |
+
else:
|
607 |
+
raise e
|
608 |
+
|
609 |
+
processed_rows.append({
|
610 |
+
'Объект': entity,
|
611 |
+
'Заголовок': str(row.get('Заголовок', '')),
|
612 |
+
'Sentiment': sentiment,
|
613 |
+
'Event_Type': event_type,
|
614 |
+
'Event_Summary': event_summary,
|
615 |
+
'Текст': text[:1000]
|
616 |
+
})
|
617 |
+
|
618 |
+
logger.info(f"Processed {idx + 1}/{total} rows")
|
619 |
+
|
620 |
+
except Exception as e:
|
621 |
+
logger.error(f"Error processing row {idx}: {str(e)}")
|
622 |
+
continue
|
623 |
+
|
624 |
+
# Create intermediate results
|
625 |
+
if processed_rows:
|
626 |
+
intermediate_df = pd.DataFrame(processed_rows)
|
627 |
+
yield (
|
628 |
+
intermediate_df,
|
629 |
+
None,
|
630 |
+
None,
|
631 |
+
f"Обработано {len(processed_rows)}/{total} строк"
|
632 |
+
)
|
633 |
+
|
634 |
+
# Wait between batches
|
635 |
+
time.sleep(2)
|
636 |
+
|
637 |
+
# Cleanup GPU resources after each batch
|
638 |
+
torch.cuda.empty_cache()
|
639 |
+
|
640 |
+
except Exception as e:
|
641 |
+
logger.error(f"Batch processing error: {str(e)}")
|
642 |
+
if "GPU quota" in str(e):
|
643 |
+
time.sleep(QUOTA_WAIT_TIME)
|
644 |
+
continue
|
645 |
+
|
646 |
+
# Final results
|
647 |
+
if processed_rows:
|
648 |
+
result_df = pd.DataFrame(processed_rows)
|
649 |
+
fig_sentiment, fig_events = create_visualizations(result_df)
|
650 |
+
return result_df, fig_sentiment, fig_events, "Обработка завершена!"
|
651 |
+
else:
|
652 |
+
return None, None, None, "Нет обработанных данных"
|
653 |
|
654 |
+
except Exception as e:
|
655 |
+
logger.error(f"File processing error: {str(e)}")
|
656 |
+
raise
|
657 |
+
|
658 |
+
def create_output_file(df, uploaded_file):
|
659 |
+
"""Create Excel file with multiple sheets from processed DataFrame"""
|
660 |
+
try:
|
661 |
+
wb = load_workbook("sample_file.xlsx")
|
|
|
|
|
662 |
|
663 |
+
# 1. Update 'Публикации' sheet
|
664 |
+
ws = wb['Публикации']
|
665 |
+
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
|
666 |
+
for c_idx, value in enumerate(row, start=1):
|
667 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
668 |
+
|
669 |
+
# 2. Update 'Мониторинг' sheet with events
|
670 |
+
ws = wb['Мониторинг']
|
671 |
+
row_idx = 4
|
672 |
+
events_df = df[df['Event_Type'] != 'Нет'].copy()
|
673 |
+
for _, row in events_df.iterrows():
|
674 |
+
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
675 |
+
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
676 |
+
ws.cell(row=row_idx, column=7, value=row['Event_Type'])
|
677 |
+
ws.cell(row=row_idx, column=8, value=row['Event_Summary'])
|
678 |
+
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
679 |
+
row_idx += 1
|
680 |
+
|
681 |
+
# 3. Update 'Сводка' sheet
|
682 |
+
ws = wb['Сводка']
|
683 |
+
unique_entities = df['Объект'].unique()
|
684 |
+
entity_stats = []
|
685 |
+
for entity in unique_entities:
|
686 |
+
entity_df = df[df['Объект'] == entity]
|
687 |
+
stats = {
|
688 |
+
'Объект': entity,
|
689 |
+
'Всего': len(entity_df),
|
690 |
+
'Негативные': len(entity_df[entity_df['Sentiment'] == 'Negative']),
|
691 |
+
'Позитивные': len(entity_df[entity_df['Sentiment'] == 'Positive'])
|
692 |
+
}
|
693 |
+
|
694 |
+
# Get most severe impact for entity
|
695 |
+
negative_df = entity_df[entity_df['Sentiment'] == 'Negative']
|
696 |
+
if len(negative_df) > 0:
|
697 |
+
impacts = negative_df['Impact'].dropna()
|
698 |
+
if len(impacts) > 0:
|
699 |
+
stats['Impact'] = impacts.iloc[0]
|
700 |
+
else:
|
701 |
+
stats['Impact'] = 'Неопределенный эффект'
|
702 |
+
else:
|
703 |
+
stats['Impact'] = 'Неопределенный эффект'
|
704 |
+
|
705 |
+
entity_stats.append(stats)
|
706 |
|
707 |
+
# Sort by number of negative mentions
|
708 |
+
entity_stats = sorted(entity_stats, key=lambda x: x['Негативные'], reverse=True)
|
709 |
|
710 |
+
# Write to sheet
|
711 |
+
row_idx = 4 # Starting row in Сводка sheet
|
712 |
+
for stats in entity_stats:
|
713 |
+
ws.cell(row=row_idx, column=5, value=stats['Объект'])
|
714 |
+
ws.cell(row=row_idx, column=6, value=stats['Всего'])
|
715 |
+
ws.cell(row=row_idx, column=7, value=stats['Негативные'])
|
716 |
+
ws.cell(row=row_idx, column=8, value=stats['Позитивные'])
|
717 |
+
ws.cell(row=row_idx, column=9, value=stats['Impact'])
|
718 |
+
row_idx += 1
|
719 |
+
|
720 |
+
# 4. Update 'Значимые' sheet
|
721 |
+
ws = wb['Значимые']
|
722 |
+
row_idx = 3
|
723 |
+
sentiment_df = df[df['Sentiment'].isin(['Negative', 'Positive'])].copy()
|
724 |
+
for _, row in sentiment_df.iterrows():
|
725 |
+
ws.cell(row=row_idx, column=3, value=row['Объек��'])
|
726 |
+
ws.cell(row=row_idx, column=4, value='релевантно')
|
727 |
+
ws.cell(row=row_idx, column=5, value=row['Sentiment'])
|
728 |
+
ws.cell(row=row_idx, column=6, value=row.get('Impact', '-'))
|
729 |
+
ws.cell(row=row_idx, column=7, value=row['Заголовок'])
|
730 |
+
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста'])
|
731 |
+
row_idx += 1
|
732 |
+
|
733 |
+
# 5. Update 'Анализ' sheet
|
734 |
+
ws = wb['Анализ']
|
735 |
+
row_idx = 4
|
736 |
+
negative_df = df[df['Sentiment'] == 'Negative'].copy()
|
737 |
+
for _, row in negative_df.iterrows():
|
738 |
+
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
739 |
+
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
740 |
+
ws.cell(row=row_idx, column=7, value="Риск убытка")
|
741 |
+
ws.cell(row=row_idx, column=8, value=row.get('Reasoning', '-'))
|
742 |
+
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
743 |
+
row_idx += 1
|
744 |
+
|
745 |
+
# 6. Update 'Тех.приложение' sheet
|
746 |
+
if 'Тех.приложение' not in wb.sheetnames:
|
747 |
+
wb.create_sheet('Тех.приложение')
|
748 |
+
ws = wb['Тех.приложение']
|
749 |
|
750 |
+
tech_cols = ['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']
|
751 |
+
tech_df = df[tech_cols].copy()
|
|
|
|
|
752 |
|
753 |
+
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
|
754 |
+
for c_idx, value in enumerate(row, start=1):
|
755 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
756 |
+
|
757 |
+
# Save workbook
|
758 |
+
output = io.BytesIO()
|
759 |
+
wb.save(output)
|
760 |
+
output.seek(0)
|
761 |
+
return output
|
762 |
+
|
763 |
+
except Exception as e:
|
764 |
+
logger.error(f"Error creating output file: {str(e)}")
|
765 |
+
logger.error(f"DataFrame shape: {df.shape}")
|
766 |
+
logger.error(f"Available columns: {df.columns.tolist()}")
|
767 |
+
return None
|
768 |
+
|
769 |
|
770 |
def create_interface():
|
771 |
+
control = ProcessControl()
|
772 |
+
|
773 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
774 |
+
# Create state for file data
|
775 |
+
current_file = gr.State(None)
|
776 |
+
|
777 |
+
gr.Markdown("# AI-анализ мониторинга новостей v.2.0 + добавка")
|
778 |
|
779 |
with gr.Row():
|
780 |
file_input = gr.File(
|
781 |
label="Загрузите Excel файл",
|
782 |
+
file_types=[".xlsx"],
|
783 |
+
type="binary"
|
784 |
)
|
785 |
|
786 |
+
with gr.Row():
|
787 |
+
with gr.Column(scale=1):
|
788 |
+
analyze_btn = gr.Button(
|
789 |
+
"▶️ Начать анализ",
|
790 |
+
variant="primary",
|
791 |
+
size="lg"
|
792 |
+
)
|
793 |
+
with gr.Column(scale=1):
|
794 |
+
stop_btn = gr.Button(
|
795 |
+
"⏹️ Остановить",
|
796 |
+
variant="stop",
|
797 |
+
size="lg"
|
798 |
+
)
|
799 |
|
800 |
+
with gr.Row():
|
801 |
+
status_box = gr.Textbox(
|
802 |
+
label="Статус дедупликации",
|
803 |
+
interactive=False,
|
804 |
+
value=""
|
805 |
+
)
|
806 |
+
|
807 |
+
with gr.Row():
|
808 |
+
progress = gr.Textbox(
|
809 |
+
label="Статус обработки",
|
810 |
+
interactive=False,
|
811 |
+
value="Ожидание файла..."
|
812 |
+
)
|
813 |
|
814 |
with gr.Row():
|
815 |
+
stats = gr.DataFrame(
|
816 |
+
label="Результаты анализа",
|
817 |
+
interactive=False,
|
818 |
+
wrap=True
|
819 |
+
)
|
820 |
+
|
821 |
+
with gr.Row():
|
822 |
+
with gr.Column(scale=1):
|
823 |
+
sentiment_plot = gr.Plot(label="Распределение тональности")
|
824 |
+
with gr.Column(scale=1):
|
825 |
+
events_plot = gr.Plot(label="Распределение событий")
|
826 |
+
|
827 |
+
# Create a download row with file component only
|
828 |
+
with gr.Row():
|
829 |
+
file_output = gr.File(
|
830 |
+
label="Скачать результаты",
|
831 |
+
visible=True,
|
832 |
+
interactive=True
|
833 |
+
)
|
834 |
+
|
835 |
+
def stop_processing():
|
836 |
+
control.request_stop()
|
837 |
+
return "Остановка обработки..."
|
838 |
+
|
839 |
|
840 |
+
@spaces.GPU(duration=300)
|
841 |
+
async def process_and_download(file_bytes):
|
842 |
+
if file_bytes is None:
|
843 |
+
gr.Warning("Пожалуйста, загрузите файл")
|
844 |
+
yield (pd.DataFrame(), None, None, None, "Ожидание файла...", "")
|
845 |
+
return
|
846 |
+
|
847 |
+
detector = None
|
848 |
+
gpu_manager = GPUTaskManager(
|
849 |
+
max_retries=3,
|
850 |
+
retry_delay=30,
|
851 |
+
cleanup_callback=lambda: detector.cleanup() if detector else None
|
852 |
+
)
|
853 |
+
|
854 |
+
try:
|
855 |
+
file_obj = io.BytesIO(file_bytes)
|
856 |
+
logger.info("File loaded into BytesIO successfully")
|
857 |
+
|
858 |
+
detector = EventDetector()
|
859 |
+
|
860 |
+
# Read and deduplicate data with retry
|
861 |
+
async def read_and_dedupe():
|
862 |
+
df = pd.read_excel(file_obj, sheet_name='Публикации')
|
863 |
+
original_count = len(df)
|
864 |
+
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
|
865 |
+
return df, original_count
|
866 |
+
|
867 |
+
df, original_count = await gpu_manager.run_with_retry(read_and_dedupe)
|
868 |
+
|
869 |
+
# Process in smaller batches with better error handling
|
870 |
+
processed_rows = []
|
871 |
+
batches = gpu_manager.batch_process(list(df.iterrows()), batch_size=3)
|
872 |
+
|
873 |
+
for batch in batches:
|
874 |
+
if control.should_stop():
|
875 |
+
break
|
876 |
+
|
877 |
+
try:
|
878 |
+
# Process batch with retry mechanism
|
879 |
+
async def process_batch():
|
880 |
+
batch_results = []
|
881 |
+
for idx, row in batch:
|
882 |
+
text = str(row.get('Выдержки из текста', '')).strip()
|
883 |
+
entity = str(row.get('Объект', '')).strip()
|
884 |
+
|
885 |
+
if text and entity:
|
886 |
+
results = detector.process_text(text, entity)
|
887 |
+
batch_results.append({
|
888 |
+
'Объект': entity,
|
889 |
+
'Заголовок': str(row.get('Заголовок', '')),
|
890 |
+
'Translated': results['translated_text'],
|
891 |
+
'Sentiment': results['sentiment'],
|
892 |
+
'Impact': results['impact'],
|
893 |
+
'Reasoning': results['reasoning'],
|
894 |
+
'Event_Type': results['event_type'],
|
895 |
+
'Event_Summary': results['event_summary'],
|
896 |
+
'Выдержки из текста': text
|
897 |
+
})
|
898 |
+
return batch_results
|
899 |
+
|
900 |
+
batch_results = await gpu_manager.run_with_retry(process_batch)
|
901 |
+
processed_rows.extend(batch_results)
|
902 |
+
|
903 |
+
# Create intermediate results
|
904 |
+
if processed_rows:
|
905 |
+
result_df = pd.DataFrame(processed_rows)
|
906 |
+
yield (
|
907 |
+
result_df,
|
908 |
+
None, None, None,
|
909 |
+
f"Обработано {len(processed_rows)}/{len(df)} строк",
|
910 |
+
f"Удалено {original_count - len(df)} дубликатов"
|
911 |
+
)
|
912 |
+
|
913 |
+
except Exception as e:
|
914 |
+
if gpu_manager.is_gpu_error(e):
|
915 |
+
logger.warning(f"GPU error in batch processing: {str(e)}")
|
916 |
+
continue
|
917 |
+
else:
|
918 |
+
logger.error(f"Non-GPU error in batch processing: {str(e)}")
|
919 |
+
|
920 |
+
finally:
|
921 |
+
torch.cuda.empty_cache()
|
922 |
+
|
923 |
+
# Create final results
|
924 |
+
if processed_rows:
|
925 |
+
result_df = pd.DataFrame(processed_rows)
|
926 |
+
output_bytes_io = create_output_file(result_df, file_obj)
|
927 |
+
fig_sentiment, fig_events = create_visualizations(result_df)
|
928 |
+
|
929 |
+
if output_bytes_io:
|
930 |
+
temp_file = "results.xlsx"
|
931 |
+
with open(temp_file, "wb") as f:
|
932 |
+
f.write(output_bytes_io.getvalue())
|
933 |
+
yield (
|
934 |
+
result_df,
|
935 |
+
fig_sentiment,
|
936 |
+
fig_events,
|
937 |
+
temp_file,
|
938 |
+
"Обработка завершена!",
|
939 |
+
f"Удалено {original_count - len(df)} дубликатов"
|
940 |
+
)
|
941 |
+
return
|
942 |
+
|
943 |
+
yield (pd.DataFrame(), None, None, None, "Нет обработанных данных", "")
|
944 |
+
|
945 |
+
except Exception as e:
|
946 |
+
error_msg = f"Ошибка анализа: {str(e)}"
|
947 |
+
logger.error(error_msg)
|
948 |
+
yield (pd.DataFrame(), None, None, None, error_msg, "")
|
949 |
+
|
950 |
+
finally:
|
951 |
+
if detector:
|
952 |
+
detector.cleanup()
|
953 |
+
|
954 |
+
stop_btn.click(fn=stop_processing, outputs=[progress])
|
955 |
|
956 |
+
# Main processing - simplified outputs
|
957 |
analyze_btn.click(
|
958 |
+
fn=process_and_download,
|
959 |
inputs=[file_input],
|
960 |
+
outputs=[
|
961 |
+
stats,
|
962 |
+
sentiment_plot,
|
963 |
+
events_plot,
|
964 |
+
file_output,
|
965 |
+
progress,
|
966 |
+
status_box
|
967 |
+
]
|
968 |
)
|
969 |
+
|
970 |
return app
|
971 |
|
972 |
if __name__ == "__main__":
|
973 |
app = create_interface()
|
974 |
+
app.launch(share=True)
|
|
|
|
|
|