Spaces:
Sleeping
Sleeping
Commit
·
7384288
1
Parent(s):
680c2d5
v.1.21
Browse files
app.py
CHANGED
@@ -80,6 +80,29 @@ class EventDetector:
|
|
80 |
logger.error(f"Error in EventDetector initialization: {e}")
|
81 |
raise
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
@spaces.GPU(duration=30)
|
84 |
def initialize_models(self):
|
85 |
if self.initialized:
|
@@ -144,17 +167,56 @@ class EventDetector:
|
|
144 |
self.cleanup()
|
145 |
raise
|
146 |
|
147 |
-
|
148 |
-
|
149 |
try:
|
150 |
-
self.
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
except Exception as e:
|
157 |
-
logger.error(f"
|
|
|
158 |
|
159 |
@spaces.GPU(duration=20)
|
160 |
def detect_events(self, text, entity):
|
@@ -211,83 +273,17 @@ class EventDetector:
|
|
211 |
logger.error(f"Event detection error: {str(e)}")
|
212 |
return "Нет", f"Error: {str(e)}"
|
213 |
|
214 |
-
|
215 |
-
|
216 |
try:
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
time.sleep(2)
|
224 |
-
|
225 |
-
truncated_text = text[:500]
|
226 |
-
results = []
|
227 |
-
|
228 |
-
try:
|
229 |
-
inputs = [truncated_text]
|
230 |
-
sentiment_results = []
|
231 |
-
|
232 |
-
# Process each model separately with delay
|
233 |
-
if self.finbert:
|
234 |
-
finbert_result = self.finbert(inputs, truncation=True, max_length=512)[0]
|
235 |
-
results.append(self.get_sentiment_label(finbert_result))
|
236 |
-
time.sleep(0.5)
|
237 |
-
|
238 |
-
if self.roberta:
|
239 |
-
roberta_result = self.roberta(inputs, truncation=True, max_length=512)[0]
|
240 |
-
results.append(self.get_sentiment_label(roberta_result))
|
241 |
-
time.sleep(0.5)
|
242 |
-
|
243 |
-
if self.finbert_tone:
|
244 |
-
finbert_tone_result = self.finbert_tone(inputs, truncation=True, max_length=512)[0]
|
245 |
-
results.append(self.get_sentiment_label(finbert_tone_result))
|
246 |
-
|
247 |
-
# Get majority vote
|
248 |
-
if results:
|
249 |
-
sentiment_counts = pd.Series(results).value_counts()
|
250 |
-
final_sentiment = sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
|
251 |
-
else:
|
252 |
-
final_sentiment = "Neutral"
|
253 |
-
|
254 |
-
self.last_gpu_use = time.time()
|
255 |
-
return final_sentiment
|
256 |
-
|
257 |
-
except Exception as e:
|
258 |
-
logger.error(f"Model inference error: {e}")
|
259 |
-
return "Neutral"
|
260 |
-
|
261 |
except Exception as e:
|
262 |
-
logger.error(f"
|
263 |
-
return "Neutral"
|
264 |
-
|
265 |
-
def create_visualizations(df):
|
266 |
-
if df is None or df.empty:
|
267 |
-
return None, None
|
268 |
-
|
269 |
-
try:
|
270 |
-
sentiments = df['Sentiment'].value_counts()
|
271 |
-
fig_sentiment = go.Figure(data=[go.Pie(
|
272 |
-
labels=sentiments.index,
|
273 |
-
values=sentiments.values,
|
274 |
-
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
|
275 |
-
)])
|
276 |
-
fig_sentiment.update_layout(title="Распределение тональности")
|
277 |
-
|
278 |
-
events = df['Event_Type'].value_counts()
|
279 |
-
fig_events = go.Figure(data=[go.Bar(
|
280 |
-
x=events.index,
|
281 |
-
y=events.values,
|
282 |
-
marker_color='#2196F3'
|
283 |
-
)])
|
284 |
-
fig_events.update_layout(title="Распределение событий")
|
285 |
-
|
286 |
-
return fig_sentiment, fig_events
|
287 |
-
|
288 |
-
except Exception as e:
|
289 |
-
logger.error(f"Visualization error: {e}")
|
290 |
-
return None, None
|
291 |
|
292 |
@spaces.GPU
|
293 |
def process_file(file_obj):
|
@@ -399,7 +395,7 @@ def create_interface():
|
|
399 |
control = ProcessControl()
|
400 |
|
401 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
402 |
-
gr.Markdown("# AI-анализ мониторинга новостей v.1.
|
403 |
|
404 |
with gr.Row():
|
405 |
file_input = gr.File(
|
|
|
80 |
logger.error(f"Error in EventDetector initialization: {e}")
|
81 |
raise
|
82 |
|
83 |
+
def get_sentiment_label(self, result):
|
84 |
+
"""
|
85 |
+
Convert model output to standardized sentiment label
|
86 |
+
"""
|
87 |
+
try:
|
88 |
+
# Handle different model output formats
|
89 |
+
if isinstance(result, dict):
|
90 |
+
label = result.get('label', '').lower()
|
91 |
+
else:
|
92 |
+
return "Neutral"
|
93 |
+
|
94 |
+
# Map different model outputs to standard labels
|
95 |
+
if label in ['positive', 'pos', 'positive tone']:
|
96 |
+
return "Positive"
|
97 |
+
elif label in ['negative', 'neg', 'negative tone']:
|
98 |
+
return "Negative"
|
99 |
+
else:
|
100 |
+
return "Neutral"
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Error in get_sentiment_label: {e}")
|
104 |
+
return "Neutral"
|
105 |
+
|
106 |
@spaces.GPU(duration=30)
|
107 |
def initialize_models(self):
|
108 |
if self.initialized:
|
|
|
167 |
self.cleanup()
|
168 |
raise
|
169 |
|
170 |
+
@spaces.GPU(duration=20)
|
171 |
+
def analyze_sentiment(self, text):
|
172 |
try:
|
173 |
+
if not self.initialized:
|
174 |
+
if not self.initialize_models():
|
175 |
+
return "Neutral"
|
176 |
+
|
177 |
+
current_time = time.time()
|
178 |
+
if current_time - self.last_gpu_use < 2:
|
179 |
+
time.sleep(2)
|
180 |
+
|
181 |
+
truncated_text = text[:500]
|
182 |
+
results = []
|
183 |
+
|
184 |
+
try:
|
185 |
+
inputs = [truncated_text]
|
186 |
+
sentiment_results = []
|
187 |
+
|
188 |
+
# Process each model separately with delay
|
189 |
+
if self.finbert:
|
190 |
+
finbert_result = self.finbert(inputs, truncation=True, max_length=512)[0]
|
191 |
+
results.append(self.get_sentiment_label(finbert_result))
|
192 |
+
time.sleep(0.5)
|
193 |
+
|
194 |
+
if self.roberta:
|
195 |
+
roberta_result = self.roberta(inputs, truncation=True, max_length=512)[0]
|
196 |
+
results.append(self.get_sentiment_label(roberta_result))
|
197 |
+
time.sleep(0.5)
|
198 |
+
|
199 |
+
if self.finbert_tone:
|
200 |
+
finbert_tone_result = self.finbert_tone(inputs, truncation=True, max_length=512)[0]
|
201 |
+
results.append(self.get_sentiment_label(finbert_tone_result))
|
202 |
+
|
203 |
+
# Get majority vote
|
204 |
+
if results:
|
205 |
+
sentiment_counts = pd.Series(results).value_counts()
|
206 |
+
final_sentiment = sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
|
207 |
+
else:
|
208 |
+
final_sentiment = "Neutral"
|
209 |
+
|
210 |
+
self.last_gpu_use = time.time()
|
211 |
+
return final_sentiment
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"Model inference error: {e}")
|
215 |
+
return "Neutral"
|
216 |
+
|
217 |
except Exception as e:
|
218 |
+
logger.error(f"Sentiment analysis error: {e}")
|
219 |
+
return "Neutral"
|
220 |
|
221 |
@spaces.GPU(duration=20)
|
222 |
def detect_events(self, text, entity):
|
|
|
273 |
logger.error(f"Event detection error: {str(e)}")
|
274 |
return "Нет", f"Error: {str(e)}"
|
275 |
|
276 |
+
def cleanup(self):
|
277 |
+
"""Clean up GPU resources"""
|
278 |
try:
|
279 |
+
self.model = None
|
280 |
+
self.finbert = None
|
281 |
+
self.roberta = None
|
282 |
+
self.finbert_tone = None
|
283 |
+
torch.cuda.empty_cache()
|
284 |
+
self.initialized = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
except Exception as e:
|
286 |
+
logger.error(f"Error in cleanup: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
@spaces.GPU
|
289 |
def process_file(file_obj):
|
|
|
395 |
control = ProcessControl()
|
396 |
|
397 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
398 |
+
gr.Markdown("# AI-анализ мониторинга новостей v.1.21")
|
399 |
|
400 |
with gr.Row():
|
401 |
file_input = gr.File(
|