Spaces:
Sleeping
Sleeping
Commit
·
6c1fc10
1
Parent(s):
8b0d8c1
complete revamp
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
|
@@ -9,37 +8,13 @@ import io
|
|
9 |
from rapidfuzz import fuzz
|
10 |
import time
|
11 |
import os
|
12 |
-
groq_key = os.environ['groq_key']
|
13 |
-
from langchain_openai import ChatOpenAI
|
14 |
-
from langchain.prompts import PromptTemplate
|
15 |
-
from openpyxl import load_workbook
|
16 |
-
from openpyxl.utils.dataframe import dataframe_to_rows
|
17 |
-
import torch.nn.functional as F
|
18 |
-
import numpy as np
|
19 |
-
import logging
|
20 |
from typing import List, Set, Tuple
|
|
|
21 |
|
22 |
-
|
23 |
-
"""Deduplicate rows based on fuzzy matching of text content"""
|
24 |
-
seen_texts = []
|
25 |
-
indices_to_keep = []
|
26 |
-
|
27 |
-
for i, text in enumerate(df[column]):
|
28 |
-
if pd.isna(text):
|
29 |
-
indices_to_keep.append(i)
|
30 |
-
continue
|
31 |
-
|
32 |
-
text = str(text)
|
33 |
-
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
|
34 |
-
seen_texts.append(text)
|
35 |
-
indices_to_keep.append(i)
|
36 |
-
|
37 |
-
return df.iloc[indices_to_keep]
|
38 |
-
|
39 |
logging.basicConfig(level=logging.INFO)
|
40 |
logger = logging.getLogger(__name__)
|
41 |
|
42 |
-
|
43 |
class GPUTaskManager:
|
44 |
def __init__(self, max_retries=3, retry_delay=30, cleanup_callback=None):
|
45 |
self.max_retries = max_retries
|
@@ -47,12 +22,11 @@ class GPUTaskManager:
|
|
47 |
self.cleanup_callback = cleanup_callback
|
48 |
|
49 |
async def run_with_retry(self, task_func, *args, **kwargs):
|
50 |
-
"""Execute a GPU task with retry logic"""
|
51 |
for attempt in range(self.max_retries):
|
52 |
try:
|
53 |
return await task_func(*args, **kwargs)
|
54 |
except Exception as e:
|
55 |
-
if "
|
56 |
if attempt < self.max_retries - 1:
|
57 |
if self.cleanup_callback:
|
58 |
self.cleanup_callback()
|
@@ -63,34 +37,7 @@ class GPUTaskManager:
|
|
63 |
|
64 |
@staticmethod
|
65 |
def batch_process(items, batch_size=3):
|
66 |
-
"""Split items into smaller batches"""
|
67 |
return [items[i:i + batch_size] for i in range(0, len(items), batch_size)]
|
68 |
-
|
69 |
-
@staticmethod
|
70 |
-
def is_gpu_error(error):
|
71 |
-
"""Check if an error is GPU-related"""
|
72 |
-
error_msg = str(error).lower()
|
73 |
-
return any(msg in error_msg for msg in [
|
74 |
-
"gpu task aborted",
|
75 |
-
"gpu quota",
|
76 |
-
"cuda out of memory",
|
77 |
-
"device-side assert"
|
78 |
-
])
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
class ProcessControl:
|
83 |
-
def __init__(self):
|
84 |
-
self.stop_requested = False
|
85 |
-
|
86 |
-
def request_stop(self):
|
87 |
-
self.stop_requested = True
|
88 |
-
|
89 |
-
def should_stop(self):
|
90 |
-
return self.stop_requested
|
91 |
-
|
92 |
-
def reset(self):
|
93 |
-
self.stop_requested = False
|
94 |
|
95 |
class ProcessControl:
|
96 |
def __init__(self):
|
@@ -117,14 +64,13 @@ class EventDetector:
|
|
117 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
logger.info(f"Initializing models on device: {device}")
|
119 |
|
120 |
-
|
121 |
-
self.initialize_models(
|
122 |
|
123 |
# Initialize transformer for declusterization
|
124 |
self.tokenizer_cluster = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
125 |
self.model_cluster = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2').to(device)
|
126 |
|
127 |
-
self.device = device
|
128 |
self.initialized = True
|
129 |
logger.info("All models initialized successfully")
|
130 |
|
@@ -132,146 +78,80 @@ class EventDetector:
|
|
132 |
logger.error(f"Error in EventDetector initialization: {str(e)}")
|
133 |
raise
|
134 |
|
135 |
-
def
|
136 |
-
|
137 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
138 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
139 |
-
|
140 |
-
def encode_text(self, text):
|
141 |
-
if pd.isna(text):
|
142 |
-
text = ""
|
143 |
-
text = str(text)
|
144 |
-
|
145 |
-
encoded_input = self.tokenizer_cluster(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(self.device)
|
146 |
-
with torch.no_grad():
|
147 |
-
model_output = self.model_cluster(**encoded_input)
|
148 |
-
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
|
149 |
-
return torch.nn.functional.normalize(sentence_embeddings[0], p=2, dim=0)
|
150 |
-
|
151 |
-
@spaces.GPU(duration=20)
|
152 |
-
def decluster_texts(self, df, text_column, similarity_threshold=0.75, time_threshold=24):
|
153 |
try:
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
current_cluster = []
|
175 |
-
|
176 |
-
# Compare with other texts
|
177 |
-
for j in df.index:
|
178 |
-
if i == j or j in indices_to_delete: # Skip same text or already marked
|
179 |
-
continue
|
180 |
-
|
181 |
-
text2 = df.loc[j, text_column]
|
182 |
-
if pd.isna(text2):
|
183 |
-
continue
|
184 |
-
|
185 |
-
# Check time difference if datetime available
|
186 |
-
if 'datetime' in df.columns:
|
187 |
-
time_diff = pd.to_datetime(df.loc[j, 'datetime']) - pd.to_datetime(df.loc[i, 'datetime'])
|
188 |
-
if abs(time_diff.total_seconds() / 3600) > time_threshold:
|
189 |
-
continue
|
190 |
-
|
191 |
-
text2_embedding = self.encode_text(text2)
|
192 |
-
similarity = torch.dot(text1_embedding, text2_embedding).item()
|
193 |
-
|
194 |
-
if similarity >= similarity_threshold:
|
195 |
-
current_cluster.append(j)
|
196 |
-
|
197 |
-
# If we found similar texts, keep the longest one
|
198 |
-
if current_cluster:
|
199 |
-
current_cluster.append(i) # Add the current text to cluster
|
200 |
-
text_lengths = df.loc[current_cluster, text_column].fillna('').str.len()
|
201 |
-
longest_text_idx = text_lengths.idxmax()
|
202 |
-
|
203 |
-
# Mark all except longest for deletion
|
204 |
-
indices_to_delete.update(set(current_cluster) - {longest_text_idx})
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
except Exception as e:
|
210 |
-
logger.error(f"
|
211 |
-
return
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
model="Helsinki-NLP/opus-mt-ru-en",
|
220 |
-
device=device
|
221 |
-
)
|
222 |
-
|
223 |
-
self.rutranslator = pipeline(
|
224 |
-
"translation",
|
225 |
-
model="Helsinki-NLP/opus-mt-en-ru",
|
226 |
-
device=device
|
227 |
-
)
|
228 |
-
|
229 |
-
# Initialize sentiment models
|
230 |
-
self.finbert = pipeline(
|
231 |
-
"sentiment-analysis",
|
232 |
-
model="ProsusAI/finbert",
|
233 |
-
device=device,
|
234 |
-
truncation=True,
|
235 |
-
max_length=512
|
236 |
-
)
|
237 |
-
self.roberta = pipeline(
|
238 |
-
"sentiment-analysis",
|
239 |
-
model="cardiffnlp/twitter-roberta-base-sentiment",
|
240 |
-
device=device,
|
241 |
-
truncation=True,
|
242 |
-
max_length=512
|
243 |
-
)
|
244 |
-
self.finbert_tone = pipeline(
|
245 |
-
"sentiment-analysis",
|
246 |
-
model="yiyanghkust/finbert-tone",
|
247 |
-
device=device,
|
248 |
-
truncation=True,
|
249 |
-
max_length=512
|
250 |
-
)
|
251 |
-
|
252 |
-
# Initialize MT5 model
|
253 |
-
self.model_name = "google/mt5-small"
|
254 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
255 |
-
self.model_name,
|
256 |
-
legacy=True
|
257 |
-
)
|
258 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
|
259 |
-
|
260 |
-
# Initialize Groq
|
261 |
-
if 'groq_key':
|
262 |
-
self.groq = ChatOpenAI(
|
263 |
-
base_url="https://api.groq.com/openai/v1",
|
264 |
-
model="llama-3.1-70b-versatile",
|
265 |
-
openai_api_key=groq_key,
|
266 |
-
temperature=0.0
|
267 |
-
)
|
268 |
-
else:
|
269 |
-
logger.warning("Groq API key not found, impact estimation will be limited")
|
270 |
-
self.groq = None
|
271 |
|
272 |
-
@spaces.GPU(duration=20)
|
273 |
def _translate_text(self, text):
|
274 |
-
"""Translate Russian text to English"""
|
275 |
try:
|
276 |
if not text or not isinstance(text, str):
|
277 |
return ""
|
@@ -280,7 +160,6 @@ class EventDetector:
|
|
280 |
if not text:
|
281 |
return ""
|
282 |
|
283 |
-
# Split into manageable chunks
|
284 |
max_length = 450
|
285 |
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
286 |
translated_chunks = []
|
@@ -288,7 +167,7 @@ class EventDetector:
|
|
288 |
for chunk in chunks:
|
289 |
result = self.translator(chunk)[0]['translation_text']
|
290 |
translated_chunks.append(result)
|
291 |
-
time.sleep(0.1)
|
292 |
|
293 |
return " ".join(translated_chunks)
|
294 |
|
@@ -296,179 +175,48 @@ class EventDetector:
|
|
296 |
logger.error(f"Translation error: {str(e)}")
|
297 |
return text
|
298 |
|
299 |
-
@spaces.GPU(duration=20)
|
300 |
def analyze_sentiment(self, text):
|
301 |
-
"""
|
302 |
try:
|
303 |
-
if not text or not isinstance(text, str):
|
304 |
return "Neutral"
|
305 |
|
306 |
-
text = text.strip()
|
307 |
-
if not text:
|
308 |
-
return "Neutral"
|
309 |
-
|
310 |
-
# Get predictions with confidence scores
|
311 |
finbert_result = self.finbert(text)[0]
|
312 |
roberta_result = self.roberta(text)[0]
|
313 |
-
finbert_tone_result = self.finbert_tone(text)[0]
|
314 |
|
315 |
-
#
|
316 |
-
|
|
|
317 |
label = result['label'].lower()
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
return "Positive"
|
323 |
-
# Lower threshold for negative to catch more cases
|
324 |
-
elif label in ['negative', 'neg', 'negative tone'] and score > 0.75:
|
325 |
-
return "Negative"
|
326 |
-
# Consider high-confidence neutral predictions
|
327 |
-
elif label == 'neutral' and score > 0.8:
|
328 |
-
return "Neutral"
|
329 |
-
# Default to negative for uncertain cases in financial context
|
330 |
else:
|
331 |
-
|
332 |
-
|
333 |
-
# Get mapped sentiments with confidence-based logic
|
334 |
-
sentiments = [
|
335 |
-
map_sentiment(finbert_result),
|
336 |
-
map_sentiment(roberta_result),
|
337 |
-
map_sentiment(finbert_tone_result)
|
338 |
-
]
|
339 |
|
340 |
-
#
|
341 |
-
if "Negative" in sentiments:
|
342 |
-
neg_count = sentiments.count("Negative")
|
343 |
-
if neg_count >= 2: # negative should be consensus
|
344 |
-
return "Negative"
|
345 |
-
|
346 |
pos_count = sentiments.count("Positive")
|
347 |
-
|
|
|
|
|
|
|
|
|
348 |
return "Positive"
|
349 |
-
|
350 |
return "Neutral"
|
351 |
|
352 |
except Exception as e:
|
353 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
354 |
return "Neutral"
|
355 |
|
356 |
-
def estimate_impact(self, text, entity):
|
357 |
-
"""Estimate impact using Groq for negative sentiment texts"""
|
358 |
-
try:
|
359 |
-
if not self.groq:
|
360 |
-
return "Неопределенный эффект", "Groq API недоступен"
|
361 |
-
|
362 |
-
template = """
|
363 |
-
You are a financial analyst. Analyze this news about {entity} and assess its potential impact.
|
364 |
-
|
365 |
-
News: {news}
|
366 |
-
|
367 |
-
Classify the impact into one of these categories:
|
368 |
-
1. "Значительный риск убытков" (Significant loss risk)
|
369 |
-
2. "Умеренный риск убытков" (Moderate loss risk)
|
370 |
-
3. "Незначительный риск убытков" (Minor loss risk)
|
371 |
-
4. "Вероятность прибыли" (Potential profit)
|
372 |
-
5. "Неопределенный эффект" (Uncertain effect)
|
373 |
-
|
374 |
-
Format your response exactly as:
|
375 |
-
Impact: [category]
|
376 |
-
Reasoning: [explanation in 2-3 sentences]
|
377 |
-
"""
|
378 |
-
|
379 |
-
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
|
380 |
-
chain = prompt | self.groq
|
381 |
-
|
382 |
-
response = chain.invoke({
|
383 |
-
"entity": entity,
|
384 |
-
"news": text
|
385 |
-
})
|
386 |
-
|
387 |
-
# Parse response
|
388 |
-
response_text = response.content if hasattr(response, 'content') else str(response)
|
389 |
-
|
390 |
-
if "Impact:" in response_text and "Reasoning:" in response_text:
|
391 |
-
parts = response_text.split("Reasoning:")
|
392 |
-
impact = parts[0].split("Impact:")[1].strip()
|
393 |
-
reasoning = parts[1].strip()
|
394 |
-
else:
|
395 |
-
impact = "Неопределенный эффект"
|
396 |
-
reasoning = "Не удалось определить влияние"
|
397 |
-
|
398 |
-
return impact, reasoning
|
399 |
-
|
400 |
-
except Exception as e:
|
401 |
-
logger.error(f"Impact estimation error: {str(e)}")
|
402 |
-
return "Неопределенный эффект", f"Ошибка анализа: {str(e)}"
|
403 |
-
|
404 |
-
|
405 |
-
@spaces.GPU(duration=60)
|
406 |
-
def process_text(self, text, entity):
|
407 |
-
"""Process text with Groq-driven sentiment analysis"""
|
408 |
-
try:
|
409 |
-
translated_text = self._translate_text(text)
|
410 |
-
initial_sentiment = self.analyze_sentiment(translated_text)
|
411 |
-
|
412 |
-
impact = "Неопределенный эффект"
|
413 |
-
reasoning = ""
|
414 |
-
|
415 |
-
# Always get Groq analysis for all texts
|
416 |
-
impact, reasoning = self.estimate_impact(translated_text, entity)
|
417 |
-
reasoning = self.rutranslator(reasoning)[0]['translation_text']
|
418 |
-
|
419 |
-
# Override sentiment based on Groq impact
|
420 |
-
final_sentiment = initial_sentiment
|
421 |
-
if impact == "Вероятность прибыли":
|
422 |
-
final_sentiment = "Positive"
|
423 |
-
|
424 |
-
event_type, event_summary = self.detect_events(text, entity)
|
425 |
-
|
426 |
-
return {
|
427 |
-
'translated_text': translated_text,
|
428 |
-
'sentiment': final_sentiment,
|
429 |
-
'impact': impact,
|
430 |
-
'reasoning': reasoning,
|
431 |
-
'event_type': event_type,
|
432 |
-
'event_summary': event_summary
|
433 |
-
}
|
434 |
-
|
435 |
-
except Exception as e:
|
436 |
-
logger.error(f"Text processing error: {str(e)}")
|
437 |
-
return {
|
438 |
-
'translated_text': '',
|
439 |
-
'sentiment': 'Neutral',
|
440 |
-
'impact': 'Неопределенный эффект',
|
441 |
-
'reasoning': f'Ошибка обработки: {str(e)}',
|
442 |
-
'event_type': 'Нет',
|
443 |
-
'event_summary': ''
|
444 |
-
}
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
@spaces.GPU(duration=20)
|
450 |
def detect_events(self, text, entity):
|
|
|
451 |
if not text or not entity:
|
452 |
return "Нет", "Invalid input"
|
453 |
|
454 |
try:
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
Text: {text}
|
459 |
-
|
460 |
-
Classify this news into ONE of these categories:
|
461 |
-
1. "Отчетность" if about: financial reports, revenue, profit, EBITDA, financial results, quarterly/annual reports
|
462 |
-
2. "Суд" if about: court cases, lawsuits, arbitration, bankruptcy, legal proceedings
|
463 |
-
3. "РЦБ" if about: bonds, securities, defaults, debt restructuring, coupon payments
|
464 |
-
4. "Нет" if none of the above
|
465 |
-
|
466 |
-
Provide classification and 2-3 sentence summary focusing on key facts.
|
467 |
-
|
468 |
-
Format response exactly as:
|
469 |
-
Category: [category name]
|
470 |
-
Summary: [brief factual summary]</s>"""
|
471 |
-
|
472 |
inputs = self.tokenizer(
|
473 |
prompt,
|
474 |
return_tensors="pt",
|
@@ -479,29 +227,22 @@ class EventDetector:
|
|
479 |
|
480 |
outputs = self.model.generate(
|
481 |
**inputs,
|
482 |
-
max_length=
|
483 |
num_return_sequences=1,
|
484 |
-
do_sample=False
|
485 |
-
temperature=0.7,
|
486 |
-
top_p=0.9,
|
487 |
-
no_repeat_ngram_size=3
|
488 |
)
|
489 |
|
490 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
491 |
|
492 |
-
#
|
493 |
-
if
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
return category, summary
|
503 |
-
|
504 |
-
return "Нет", "Could not classify event"
|
505 |
|
506 |
except Exception as e:
|
507 |
logger.error(f"Event detection error: {str(e)}")
|
@@ -514,7 +255,6 @@ class EventDetector:
|
|
514 |
self.translator = None
|
515 |
self.finbert = None
|
516 |
self.roberta = None
|
517 |
-
self.finbert_tone = None
|
518 |
torch.cuda.empty_cache()
|
519 |
self.initialized = False
|
520 |
logger.info("Cleaned up GPU resources")
|
@@ -522,6 +262,7 @@ class EventDetector:
|
|
522 |
logger.error(f"Error in cleanup: {str(e)}")
|
523 |
|
524 |
def create_visualizations(df):
|
|
|
525 |
if df is None or df.empty:
|
526 |
return None, None
|
527 |
|
@@ -547,426 +288,94 @@ def create_visualizations(df):
|
|
547 |
except Exception as e:
|
548 |
logger.error(f"Visualization error: {e}")
|
549 |
return None, None
|
550 |
-
|
551 |
-
|
552 |
-
@spaces.GPU
|
553 |
-
def process_file(file_obj):
|
554 |
-
try:
|
555 |
-
logger.info("Starting to read Excel file...")
|
556 |
-
df = pd.read_excel(file_obj, sheet_name='Публикации')
|
557 |
-
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
|
558 |
-
|
559 |
-
# Deduplication
|
560 |
-
original_count = len(df)
|
561 |
-
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
|
562 |
-
logger.info(f"Removed {original_count - len(df)} duplicate entries")
|
563 |
-
|
564 |
-
detector = EventDetector()
|
565 |
-
processed_rows = []
|
566 |
-
total = len(df)
|
567 |
-
|
568 |
-
# Process in smaller batches with quota management
|
569 |
-
BATCH_SIZE = 3 # Reduced batch size
|
570 |
-
QUOTA_WAIT_TIME = 60 # Wait time when quota is exceeded
|
571 |
-
|
572 |
-
for batch_start in range(0, total, BATCH_SIZE):
|
573 |
-
try:
|
574 |
-
batch_end = min(batch_start + BATCH_SIZE, total)
|
575 |
-
batch = df.iloc[batch_start:batch_end]
|
576 |
-
|
577 |
-
# Initialize models for batch
|
578 |
-
if not detector.initialized:
|
579 |
-
detector.initialize_models()
|
580 |
-
time.sleep(1) # Wait after initialization
|
581 |
-
|
582 |
-
for idx, row in batch.iterrows():
|
583 |
-
try:
|
584 |
-
text = str(row.get('Выдержки из текста', ''))
|
585 |
-
if not text.strip():
|
586 |
-
continue
|
587 |
-
|
588 |
-
entity = str(row.get('Объект', ''))
|
589 |
-
if not entity.strip():
|
590 |
-
continue
|
591 |
-
|
592 |
-
# Process with GPU quota management
|
593 |
-
event_type = "Нет"
|
594 |
-
event_summary = ""
|
595 |
-
sentiment = "Neutral"
|
596 |
-
|
597 |
-
try:
|
598 |
-
event_type, event_summary = detector.detect_events(text, entity)
|
599 |
-
time.sleep(1) # Wait between GPU operations
|
600 |
-
sentiment = detector.analyze_sentiment(text)
|
601 |
-
except Exception as e:
|
602 |
-
if "GPU quota" in str(e):
|
603 |
-
logger.warning("GPU quota exceeded, waiting...")
|
604 |
-
time.sleep(QUOTA_WAIT_TIME)
|
605 |
-
continue
|
606 |
-
else:
|
607 |
-
raise e
|
608 |
-
|
609 |
-
processed_rows.append({
|
610 |
-
'Объект': entity,
|
611 |
-
'Заголовок': str(row.get('Заголовок', '')),
|
612 |
-
'Sentiment': sentiment,
|
613 |
-
'Event_Type': event_type,
|
614 |
-
'Event_Summary': event_summary,
|
615 |
-
'Текст': text[:1000]
|
616 |
-
})
|
617 |
-
|
618 |
-
logger.info(f"Processed {idx + 1}/{total} rows")
|
619 |
-
|
620 |
-
except Exception as e:
|
621 |
-
logger.error(f"Error processing row {idx}: {str(e)}")
|
622 |
-
continue
|
623 |
-
|
624 |
-
# Create intermediate results
|
625 |
-
if processed_rows:
|
626 |
-
intermediate_df = pd.DataFrame(processed_rows)
|
627 |
-
yield (
|
628 |
-
intermediate_df,
|
629 |
-
None,
|
630 |
-
None,
|
631 |
-
f"Обработано {len(processed_rows)}/{total} строк"
|
632 |
-
)
|
633 |
-
|
634 |
-
# Wait between batches
|
635 |
-
time.sleep(2)
|
636 |
-
|
637 |
-
# Cleanup GPU resources after each batch
|
638 |
-
torch.cuda.empty_cache()
|
639 |
-
|
640 |
-
except Exception as e:
|
641 |
-
logger.error(f"Batch processing error: {str(e)}")
|
642 |
-
if "GPU quota" in str(e):
|
643 |
-
time.sleep(QUOTA_WAIT_TIME)
|
644 |
-
continue
|
645 |
-
|
646 |
-
# Final results
|
647 |
-
if processed_rows:
|
648 |
-
result_df = pd.DataFrame(processed_rows)
|
649 |
-
fig_sentiment, fig_events = create_visualizations(result_df)
|
650 |
-
return result_df, fig_sentiment, fig_events, "Обработка завершена!"
|
651 |
-
else:
|
652 |
-
return None, None, None, "Нет обработанных данных"
|
653 |
-
|
654 |
-
except Exception as e:
|
655 |
-
logger.error(f"File processing error: {str(e)}")
|
656 |
-
raise
|
657 |
-
|
658 |
-
def create_output_file(df, uploaded_file):
|
659 |
-
"""Create Excel file with multiple sheets from processed DataFrame"""
|
660 |
-
try:
|
661 |
-
wb = load_workbook("sample_file.xlsx")
|
662 |
-
|
663 |
-
# 1. Update 'Публикации' sheet
|
664 |
-
ws = wb['Публикации']
|
665 |
-
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
|
666 |
-
for c_idx, value in enumerate(row, start=1):
|
667 |
-
ws.cell(row=r_idx, column=c_idx, value=value)
|
668 |
-
|
669 |
-
# 2. Update 'Мониторинг' sheet with events
|
670 |
-
ws = wb['Мониторинг']
|
671 |
-
row_idx = 4
|
672 |
-
events_df = df[df['Event_Type'] != 'Нет'].copy()
|
673 |
-
for _, row in events_df.iterrows():
|
674 |
-
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
675 |
-
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
676 |
-
ws.cell(row=row_idx, column=7, value=row['Event_Type'])
|
677 |
-
ws.cell(row=row_idx, column=8, value=row['Event_Summary'])
|
678 |
-
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
679 |
-
row_idx += 1
|
680 |
-
|
681 |
-
# 3. Update 'Сводка' sheet
|
682 |
-
ws = wb['Сводка']
|
683 |
-
unique_entities = df['Объект'].unique()
|
684 |
-
entity_stats = []
|
685 |
-
for entity in unique_entities:
|
686 |
-
entity_df = df[df['Объект'] == entity]
|
687 |
-
stats = {
|
688 |
-
'Объект': entity,
|
689 |
-
'Всего': len(entity_df),
|
690 |
-
'Негативные': len(entity_df[entity_df['Sentiment'] == 'Negative']),
|
691 |
-
'Позитивные': len(entity_df[entity_df['Sentiment'] == 'Positive'])
|
692 |
-
}
|
693 |
-
|
694 |
-
# Get most severe impact for entity
|
695 |
-
negative_df = entity_df[entity_df['Sentiment'] == 'Negative']
|
696 |
-
if len(negative_df) > 0:
|
697 |
-
impacts = negative_df['Impact'].dropna()
|
698 |
-
if len(impacts) > 0:
|
699 |
-
stats['Impact'] = impacts.iloc[0]
|
700 |
-
else:
|
701 |
-
stats['Impact'] = 'Неопределенный эффект'
|
702 |
-
else:
|
703 |
-
stats['Impact'] = 'Неопределенный эффект'
|
704 |
-
|
705 |
-
entity_stats.append(stats)
|
706 |
-
|
707 |
-
# Sort by number of negative mentions
|
708 |
-
entity_stats = sorted(entity_stats, key=lambda x: x['Негативные'], reverse=True)
|
709 |
-
|
710 |
-
# Write to sheet
|
711 |
-
row_idx = 4 # Starting row in Сводка sheet
|
712 |
-
for stats in entity_stats:
|
713 |
-
ws.cell(row=row_idx, column=5, value=stats['Объект'])
|
714 |
-
ws.cell(row=row_idx, column=6, value=stats['Всего'])
|
715 |
-
ws.cell(row=row_idx, column=7, value=stats['Негативные'])
|
716 |
-
ws.cell(row=row_idx, column=8, value=stats['Позитивные'])
|
717 |
-
ws.cell(row=row_idx, column=9, value=stats['Impact'])
|
718 |
-
row_idx += 1
|
719 |
-
|
720 |
-
# 4. Update 'Значимые' sheet
|
721 |
-
ws = wb['Значимые']
|
722 |
-
row_idx = 3
|
723 |
-
sentiment_df = df[df['Sentiment'].isin(['Negative', 'Positive'])].copy()
|
724 |
-
for _, row in sentiment_df.iterrows():
|
725 |
-
ws.cell(row=row_idx, column=3, value=row['Объект'])
|
726 |
-
ws.cell(row=row_idx, column=4, value='релевантно')
|
727 |
-
ws.cell(row=row_idx, column=5, value=row['Sentiment'])
|
728 |
-
ws.cell(row=row_idx, column=6, value=row.get('Impact', '-'))
|
729 |
-
ws.cell(row=row_idx, column=7, value=row['Заголовок'])
|
730 |
-
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста'])
|
731 |
-
row_idx += 1
|
732 |
-
|
733 |
-
# 5. Update 'Анализ' sheet
|
734 |
-
ws = wb['Анализ']
|
735 |
-
row_idx = 4
|
736 |
-
negative_df = df[df['Sentiment'] == 'Negative'].copy()
|
737 |
-
for _, row in negative_df.iterrows():
|
738 |
-
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
739 |
-
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
740 |
-
ws.cell(row=row_idx, column=7, value="Риск убытка")
|
741 |
-
ws.cell(row=row_idx, column=8, value=row.get('Reasoning', '-'))
|
742 |
-
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
743 |
-
row_idx += 1
|
744 |
-
|
745 |
-
# 6. Update 'Тех.приложение' sheet
|
746 |
-
if 'Тех.приложение' not in wb.sheetnames:
|
747 |
-
wb.create_sheet('Тех.приложение')
|
748 |
-
ws = wb['Тех.приложение']
|
749 |
-
|
750 |
-
tech_cols = ['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']
|
751 |
-
tech_df = df[tech_cols].copy()
|
752 |
-
|
753 |
-
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
|
754 |
-
for c_idx, value in enumerate(row, start=1):
|
755 |
-
ws.cell(row=r_idx, column=c_idx, value=value)
|
756 |
-
|
757 |
-
# Save workbook
|
758 |
-
output = io.BytesIO()
|
759 |
-
wb.save(output)
|
760 |
-
output.seek(0)
|
761 |
-
return output
|
762 |
-
|
763 |
-
except Exception as e:
|
764 |
-
logger.error(f"Error creating output file: {str(e)}")
|
765 |
-
logger.error(f"DataFrame shape: {df.shape}")
|
766 |
-
logger.error(f"Available columns: {df.columns.tolist()}")
|
767 |
-
return None
|
768 |
-
|
769 |
|
770 |
def create_interface():
|
|
|
771 |
control = ProcessControl()
|
772 |
|
773 |
-
with gr.Blocks(
|
774 |
-
#
|
775 |
-
current_file = gr.State(None)
|
776 |
-
|
777 |
-
gr.Markdown("# AI-анализ мониторинга новостей v.2.0 + добавка")
|
778 |
|
779 |
with gr.Row():
|
780 |
file_input = gr.File(
|
781 |
label="Загрузите Excel файл",
|
782 |
-
file_types=[".xlsx"]
|
783 |
-
type="binary"
|
784 |
)
|
785 |
|
786 |
with gr.Row():
|
787 |
-
|
788 |
-
|
789 |
-
"▶️ Начать анализ",
|
790 |
-
variant="primary",
|
791 |
-
size="lg"
|
792 |
-
)
|
793 |
-
with gr.Column(scale=1):
|
794 |
-
stop_btn = gr.Button(
|
795 |
-
"⏹️ Остановить",
|
796 |
-
variant="stop",
|
797 |
-
size="lg"
|
798 |
-
)
|
799 |
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
with gr.Row():
|
808 |
-
progress = gr.Textbox(
|
809 |
-
label="Статус обработки",
|
810 |
-
interactive=False,
|
811 |
-
value="Ожидание файла..."
|
812 |
-
)
|
813 |
|
814 |
with gr.Row():
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
wrap=True
|
819 |
-
)
|
820 |
-
|
821 |
-
with gr.Row():
|
822 |
-
with gr.Column(scale=1):
|
823 |
-
sentiment_plot = gr.Plot(label="Распределение тональности")
|
824 |
-
with gr.Column(scale=1):
|
825 |
-
events_plot = gr.Plot(label="Распределение событий")
|
826 |
-
|
827 |
-
# Create a download row with file component only
|
828 |
-
with gr.Row():
|
829 |
-
file_output = gr.File(
|
830 |
-
label="Скачать результаты",
|
831 |
-
visible=True,
|
832 |
-
interactive=True
|
833 |
-
)
|
834 |
-
|
835 |
def stop_processing():
|
836 |
control.request_stop()
|
837 |
return "Остановка обработки..."
|
838 |
-
|
839 |
|
840 |
-
|
841 |
-
def process_and_download(file_bytes):
|
842 |
-
if file_bytes is None:
|
843 |
-
gr.Warning("Пожалуйста, загрузите файл")
|
844 |
-
return (pd.DataFrame(), None, None, None, "Ожидание файла...", "")
|
845 |
-
|
846 |
-
detector = None
|
847 |
-
gpu_manager = GPUTaskManager(
|
848 |
-
max_retries=3,
|
849 |
-
retry_delay=30,
|
850 |
-
cleanup_callback=lambda: detector.cleanup() if detector else None
|
851 |
-
)
|
852 |
-
|
853 |
try:
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
detector = EventDetector()
|
858 |
-
|
859 |
-
# Read and deduplicate data with retry
|
860 |
-
async def read_and_dedupe():
|
861 |
-
df = pd.read_excel(file_obj, sheet_name='Публикации')
|
862 |
-
original_count = len(df)
|
863 |
-
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
|
864 |
-
return df, original_count
|
865 |
|
866 |
-
df
|
867 |
-
|
868 |
-
# Process in smaller batches with better error handling
|
869 |
processed_rows = []
|
870 |
-
batches = gpu_manager.batch_process(list(df.iterrows()), batch_size=3)
|
871 |
|
872 |
-
|
|
|
873 |
if control.should_stop():
|
874 |
break
|
875 |
|
876 |
-
|
877 |
-
|
878 |
-
async def process_batch():
|
879 |
-
batch_results = []
|
880 |
-
for idx, row in batch:
|
881 |
-
text = str(row.get('Выдержки из текста', '')).strip()
|
882 |
-
entity = str(row.get('Объект', '')).strip()
|
883 |
-
|
884 |
-
if text and entity:
|
885 |
-
results = detector.process_text(text, entity)
|
886 |
-
batch_results.append({
|
887 |
-
'Объект': entity,
|
888 |
-
'Заголовок': str(row.get('Заголовок', '')),
|
889 |
-
'Translated': results['translated_text'],
|
890 |
-
'Sentiment': results['sentiment'],
|
891 |
-
'Impact': results['impact'],
|
892 |
-
'Reasoning': results['reasoning'],
|
893 |
-
'Event_Type': results['event_type'],
|
894 |
-
'Event_Summary': results['event_summary'],
|
895 |
-
'Выдержки из текста': text
|
896 |
-
})
|
897 |
-
return batch_results
|
898 |
-
|
899 |
-
batch_results = await gpu_manager.run_with_retry(process_batch)
|
900 |
-
processed_rows.extend(batch_results)
|
901 |
-
|
902 |
-
# Create intermediate results
|
903 |
-
if processed_rows:
|
904 |
-
result_df = pd.DataFrame(processed_rows)
|
905 |
-
yield (
|
906 |
-
result_df,
|
907 |
-
None, None, None,
|
908 |
-
f"Обработано {len(processed_rows)}/{len(df)} строк",
|
909 |
-
f"Удалено {original_count - len(df)} дубликатов"
|
910 |
-
)
|
911 |
-
|
912 |
-
except Exception as e:
|
913 |
-
if gpu_manager.is_gpu_error(e):
|
914 |
-
logger.warning(f"GPU error in batch processing: {str(e)}")
|
915 |
-
continue
|
916 |
-
else:
|
917 |
-
logger.error(f"Non-GPU error in batch processing: {str(e)}")
|
918 |
-
|
919 |
-
finally:
|
920 |
-
torch.cuda.empty_cache()
|
921 |
-
|
922 |
-
# Create final results
|
923 |
-
if processed_rows:
|
924 |
-
result_df = pd.DataFrame(processed_rows)
|
925 |
-
output_bytes_io = create_output_file(result_df, file_obj)
|
926 |
-
fig_sentiment, fig_events = create_visualizations(result_df)
|
927 |
|
928 |
-
if
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
|
|
|
|
|
|
|
|
942 |
|
943 |
except Exception as e:
|
944 |
error_msg = f"Ошибка анализа: {str(e)}"
|
945 |
logger.error(error_msg)
|
946 |
-
return
|
947 |
|
948 |
finally:
|
949 |
-
if detector:
|
950 |
detector.cleanup()
|
951 |
|
952 |
stop_btn.click(fn=stop_processing, outputs=[progress])
|
953 |
|
954 |
-
# Main processing - simplified outputs
|
955 |
analyze_btn.click(
|
956 |
-
fn=
|
957 |
inputs=[file_input],
|
958 |
-
outputs=[
|
959 |
-
stats,
|
960 |
-
sentiment_plot,
|
961 |
-
events_plot,
|
962 |
-
file_output,
|
963 |
-
progress,
|
964 |
-
status_box
|
965 |
-
]
|
966 |
)
|
967 |
-
|
968 |
return app
|
969 |
|
970 |
if __name__ == "__main__":
|
971 |
app = create_interface()
|
972 |
-
app.launch(
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
|
|
|
8 |
from rapidfuzz import fuzz
|
9 |
import time
|
10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from typing import List, Set, Tuple
|
12 |
+
import asyncio
|
13 |
|
14 |
+
# Configure logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
|
|
18 |
class GPUTaskManager:
|
19 |
def __init__(self, max_retries=3, retry_delay=30, cleanup_callback=None):
|
20 |
self.max_retries = max_retries
|
|
|
22 |
self.cleanup_callback = cleanup_callback
|
23 |
|
24 |
async def run_with_retry(self, task_func, *args, **kwargs):
|
|
|
25 |
for attempt in range(self.max_retries):
|
26 |
try:
|
27 |
return await task_func(*args, **kwargs)
|
28 |
except Exception as e:
|
29 |
+
if "CUDA out of memory" in str(e) or "GPU quota" in str(e):
|
30 |
if attempt < self.max_retries - 1:
|
31 |
if self.cleanup_callback:
|
32 |
self.cleanup_callback()
|
|
|
37 |
|
38 |
@staticmethod
|
39 |
def batch_process(items, batch_size=3):
|
|
|
40 |
return [items[i:i + batch_size] for i in range(0, len(items), batch_size)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
class ProcessControl:
|
43 |
def __init__(self):
|
|
|
64 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
logger.info(f"Initializing models on device: {device}")
|
66 |
|
67 |
+
self.device = device
|
68 |
+
self.initialize_models()
|
69 |
|
70 |
# Initialize transformer for declusterization
|
71 |
self.tokenizer_cluster = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
72 |
self.model_cluster = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2').to(device)
|
73 |
|
|
|
74 |
self.initialized = True
|
75 |
logger.info("All models initialized successfully")
|
76 |
|
|
|
78 |
logger.error(f"Error in EventDetector initialization: {str(e)}")
|
79 |
raise
|
80 |
|
81 |
+
def initialize_models(self):
|
82 |
+
"""Initialize models with proper error handling"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
try:
|
84 |
+
# Initialize translation models
|
85 |
+
self.translator = pipeline(
|
86 |
+
"translation",
|
87 |
+
model="Helsinki-NLP/opus-mt-ru-en",
|
88 |
+
device=self.device
|
89 |
+
)
|
90 |
|
91 |
+
self.rutranslator = pipeline(
|
92 |
+
"translation",
|
93 |
+
model="Helsinki-NLP/opus-mt-en-ru",
|
94 |
+
device=self.device
|
95 |
+
)
|
96 |
+
|
97 |
+
# Initialize sentiment models
|
98 |
+
self.finbert = pipeline(
|
99 |
+
"sentiment-analysis",
|
100 |
+
model="ProsusAI/finbert",
|
101 |
+
device=self.device,
|
102 |
+
truncation=True,
|
103 |
+
max_length=512
|
104 |
+
)
|
105 |
|
106 |
+
self.roberta = pipeline(
|
107 |
+
"sentiment-analysis",
|
108 |
+
model="cardiffnlp/twitter-roberta-base-sentiment",
|
109 |
+
device=self.device,
|
110 |
+
truncation=True,
|
111 |
+
max_length=512
|
112 |
+
)
|
113 |
+
|
114 |
+
# Initialize MT5 model
|
115 |
+
self.model_name = "google/mt5-small"
|
116 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
117 |
+
self.model_name,
|
118 |
+
legacy=True
|
119 |
+
)
|
120 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(self.device)
|
121 |
|
122 |
+
except Exception as e:
|
123 |
+
logger.error(f"Model initialization error: {str(e)}")
|
124 |
+
raise
|
125 |
+
|
126 |
+
def process_text(self, text, entity):
|
127 |
+
"""Process text with simplified analysis"""
|
128 |
+
try:
|
129 |
+
translated_text = self._translate_text(text)
|
130 |
+
sentiment = self.analyze_sentiment(translated_text)
|
131 |
+
event_type, event_summary = self.detect_events(text, entity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
return {
|
134 |
+
'translated_text': translated_text,
|
135 |
+
'sentiment': sentiment,
|
136 |
+
'impact': 'Неопределенный эффект',
|
137 |
+
'reasoning': 'Автоматический анализ',
|
138 |
+
'event_type': event_type,
|
139 |
+
'event_summary': event_summary
|
140 |
+
}
|
141 |
|
142 |
except Exception as e:
|
143 |
+
logger.error(f"Text processing error: {str(e)}")
|
144 |
+
return {
|
145 |
+
'translated_text': '',
|
146 |
+
'sentiment': 'Neutral',
|
147 |
+
'impact': 'Неопределенный эффект',
|
148 |
+
'reasoning': f'Ошибка обработки: {str(e)}',
|
149 |
+
'event_type': 'Нет',
|
150 |
+
'event_summary': ''
|
151 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
|
|
153 |
def _translate_text(self, text):
|
154 |
+
"""Translate Russian text to English with proper error handling"""
|
155 |
try:
|
156 |
if not text or not isinstance(text, str):
|
157 |
return ""
|
|
|
160 |
if not text:
|
161 |
return ""
|
162 |
|
|
|
163 |
max_length = 450
|
164 |
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)]
|
165 |
translated_chunks = []
|
|
|
167 |
for chunk in chunks:
|
168 |
result = self.translator(chunk)[0]['translation_text']
|
169 |
translated_chunks.append(result)
|
170 |
+
time.sleep(0.1)
|
171 |
|
172 |
return " ".join(translated_chunks)
|
173 |
|
|
|
175 |
logger.error(f"Translation error: {str(e)}")
|
176 |
return text
|
177 |
|
|
|
178 |
def analyze_sentiment(self, text):
|
179 |
+
"""Simplified sentiment analysis"""
|
180 |
try:
|
181 |
+
if not text or not isinstance(text, str) or not text.strip():
|
182 |
return "Neutral"
|
183 |
|
|
|
|
|
|
|
|
|
|
|
184 |
finbert_result = self.finbert(text)[0]
|
185 |
roberta_result = self.roberta(text)[0]
|
|
|
186 |
|
187 |
+
# Simple majority voting
|
188 |
+
sentiments = []
|
189 |
+
for result in [finbert_result, roberta_result]:
|
190 |
label = result['label'].lower()
|
191 |
+
if 'positive' in label or 'pos' in label:
|
192 |
+
sentiments.append("Positive")
|
193 |
+
elif 'negative' in label or 'neg' in label:
|
194 |
+
sentiments.append("Negative")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
else:
|
196 |
+
sentiments.append("Neutral")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
# Count occurrences
|
|
|
|
|
|
|
|
|
|
|
199 |
pos_count = sentiments.count("Positive")
|
200 |
+
neg_count = sentiments.count("Negative")
|
201 |
+
|
202 |
+
if neg_count > pos_count:
|
203 |
+
return "Negative"
|
204 |
+
elif pos_count > neg_count:
|
205 |
return "Positive"
|
|
|
206 |
return "Neutral"
|
207 |
|
208 |
except Exception as e:
|
209 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
210 |
return "Neutral"
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
def detect_events(self, text, entity):
|
213 |
+
"""Simplified event detection"""
|
214 |
if not text or not entity:
|
215 |
return "Нет", "Invalid input"
|
216 |
|
217 |
try:
|
218 |
+
prompt = f"<s>Classify news about {entity}: {text}</s>"
|
219 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
inputs = self.tokenizer(
|
221 |
prompt,
|
222 |
return_tensors="pt",
|
|
|
227 |
|
228 |
outputs = self.model.generate(
|
229 |
**inputs,
|
230 |
+
max_length=100,
|
231 |
num_return_sequences=1,
|
232 |
+
do_sample=False
|
|
|
|
|
|
|
233 |
)
|
234 |
|
235 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
236 |
|
237 |
+
# Simple classification based on keywords
|
238 |
+
if any(word in response.lower() for word in ['financial', 'revenue', 'profit']):
|
239 |
+
return "Отчетность", "Financial report detected"
|
240 |
+
elif any(word in response.lower() for word in ['court', 'lawsuit', 'legal']):
|
241 |
+
return "Суд", "Legal proceedings detected"
|
242 |
+
elif any(word in response.lower() for word in ['bonds', 'securities', 'debt']):
|
243 |
+
return "РЦБ", "Securities-related news detected"
|
244 |
+
|
245 |
+
return "Нет", "No specific event detected"
|
|
|
|
|
|
|
|
|
246 |
|
247 |
except Exception as e:
|
248 |
logger.error(f"Event detection error: {str(e)}")
|
|
|
255 |
self.translator = None
|
256 |
self.finbert = None
|
257 |
self.roberta = None
|
|
|
258 |
torch.cuda.empty_cache()
|
259 |
self.initialized = False
|
260 |
logger.info("Cleaned up GPU resources")
|
|
|
262 |
logger.error(f"Error in cleanup: {str(e)}")
|
263 |
|
264 |
def create_visualizations(df):
|
265 |
+
"""Create visualization plots"""
|
266 |
if df is None or df.empty:
|
267 |
return None, None
|
268 |
|
|
|
288 |
except Exception as e:
|
289 |
logger.error(f"Visualization error: {e}")
|
290 |
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
def create_interface():
|
293 |
+
"""Create Gradio interface"""
|
294 |
control = ProcessControl()
|
295 |
|
296 |
+
with gr.Blocks() as app:
|
297 |
+
gr.Markdown("# AI-анализ мониторинга новостей v.2.0")
|
|
|
|
|
|
|
298 |
|
299 |
with gr.Row():
|
300 |
file_input = gr.File(
|
301 |
label="Загрузите Excel файл",
|
302 |
+
file_types=[".xlsx"]
|
|
|
303 |
)
|
304 |
|
305 |
with gr.Row():
|
306 |
+
analyze_btn = gr.Button("▶️ Начать анализ", variant="primary")
|
307 |
+
stop_btn = gr.Button("⏹️ Остановить", variant="stop")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
progress = gr.Textbox(
|
310 |
+
label="Статус обработки",
|
311 |
+
value="Ожидание файла..."
|
312 |
+
)
|
313 |
+
|
314 |
+
stats = gr.DataFrame(label="Результаты анализа")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
with gr.Row():
|
317 |
+
sentiment_plot = gr.Plot(label="Распределение тональности")
|
318 |
+
events_plot = gr.Plot(label="Распределение событий")
|
319 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
def stop_processing():
|
321 |
control.request_stop()
|
322 |
return "Остановка обработки..."
|
|
|
323 |
|
324 |
+
def process_file(file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
try:
|
326 |
+
if file is None:
|
327 |
+
return None, None, None, "Пожалуйста, загрузите файл"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
df = pd.read_excel(file.name)
|
330 |
+
detector = EventDetector()
|
|
|
331 |
processed_rows = []
|
|
|
332 |
|
333 |
+
total = len(df)
|
334 |
+
for idx, row in df.iterrows():
|
335 |
if control.should_stop():
|
336 |
break
|
337 |
|
338 |
+
text = str(row.get('Выдержки из текста', '')).strip()
|
339 |
+
entity = str(row.get('Объект', '')).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
if text and entity:
|
342 |
+
results = detector.process_text(text, entity)
|
343 |
+
processed_rows.append({
|
344 |
+
'Объект': entity,
|
345 |
+
'Заголовок': str(row.get('Заголовок', '')),
|
346 |
+
'Sentiment': results['sentiment'],
|
347 |
+
'Event_Type': results['event_type'],
|
348 |
+
'Event_Summary': results['event_summary'],
|
349 |
+
'Текст': text[:1000]
|
350 |
+
})
|
351 |
+
|
352 |
+
if len(processed_rows) % 10 == 0:
|
353 |
+
yield pd.DataFrame(processed_rows), None, None, f"Обработано {len(processed_rows)}/{total} строк"
|
354 |
+
|
355 |
+
final_df = pd.DataFrame(processed_rows)
|
356 |
+
fig_sentiment, fig_events = create_visualizations(final_df)
|
357 |
+
|
358 |
+
return final_df, fig_sentiment, fig_events, "Обработка завершена!"
|
359 |
|
360 |
except Exception as e:
|
361 |
error_msg = f"Ошибка анализа: {str(e)}"
|
362 |
logger.error(error_msg)
|
363 |
+
return None, None, None, error_msg
|
364 |
|
365 |
finally:
|
366 |
+
if 'detector' in locals():
|
367 |
detector.cleanup()
|
368 |
|
369 |
stop_btn.click(fn=stop_processing, outputs=[progress])
|
370 |
|
|
|
371 |
analyze_btn.click(
|
372 |
+
fn=process_file,
|
373 |
inputs=[file_input],
|
374 |
+
outputs=[stats, sentiment_plot, events_plot, progress]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
)
|
376 |
+
|
377 |
return app
|
378 |
|
379 |
if __name__ == "__main__":
|
380 |
app = create_interface()
|
381 |
+
app.launch()
|