Spaces:
Sleeping
Sleeping
Commit
·
33771c2
1
Parent(s):
23332bc
v.1.16
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import plotly.graph_objects as go
|
|
7 |
import logging
|
8 |
import io
|
9 |
from rapidfuzz import fuzz
|
|
|
10 |
|
11 |
def fuzzy_deduplicate(df, column, threshold=55):
|
12 |
"""Deduplicate rows based on fuzzy matching of text content"""
|
@@ -41,21 +42,49 @@ class ProcessControl:
|
|
41 |
def reset(self):
|
42 |
self.stop_requested = False
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
class EventDetector:
|
45 |
def __init__(self):
|
46 |
-
|
47 |
-
|
48 |
-
self.
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
@spaces.GPU(duration=30)
|
58 |
def initialize_models(self):
|
|
|
|
|
|
|
59 |
try:
|
60 |
current_time = time.time()
|
61 |
if current_time - self.last_gpu_use < 2:
|
@@ -65,29 +94,116 @@ class EventDetector:
|
|
65 |
logger.info(f"Initializing models on device: {device}")
|
66 |
|
67 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
self.last_gpu_use = time.time()
|
|
|
|
|
73 |
return True
|
74 |
|
75 |
except Exception as e:
|
|
|
76 |
logger.error(f"Model initialization error: {str(e)}")
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def detect_events(self, text, entity):
|
81 |
if not text or not entity:
|
82 |
return "Нет", "Invalid input"
|
83 |
|
84 |
try:
|
|
|
|
|
|
|
|
|
85 |
current_time = time.time()
|
86 |
if current_time - self.last_gpu_use < 2:
|
87 |
time.sleep(2)
|
88 |
-
|
89 |
-
# Rest of the method remains the same...
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
self.last_gpu_use = time.time()
|
92 |
return event_type, response
|
93 |
|
@@ -232,7 +348,7 @@ def create_interface():
|
|
232 |
control = ProcessControl()
|
233 |
|
234 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
235 |
-
gr.Markdown("# AI-анализ мониторинга новостей v.1.
|
236 |
|
237 |
with gr.Row():
|
238 |
file_input = gr.File(
|
|
|
7 |
import logging
|
8 |
import io
|
9 |
from rapidfuzz import fuzz
|
10 |
+
import time
|
11 |
|
12 |
def fuzzy_deduplicate(df, column, threshold=55):
|
13 |
"""Deduplicate rows based on fuzzy matching of text content"""
|
|
|
42 |
def reset(self):
|
43 |
self.stop_requested = False
|
44 |
|
45 |
+
class ProcessControl:
|
46 |
+
def __init__(self):
|
47 |
+
self.stop_requested = False
|
48 |
+
self.error = None
|
49 |
+
|
50 |
+
def request_stop(self):
|
51 |
+
self.stop_requested = True
|
52 |
+
|
53 |
+
def should_stop(self):
|
54 |
+
return self.stop_requested
|
55 |
+
|
56 |
+
def reset(self):
|
57 |
+
self.stop_requested = False
|
58 |
+
self.error = None
|
59 |
+
|
60 |
+
def set_error(self, error):
|
61 |
+
self.error = error
|
62 |
+
self.stop_requested = True
|
63 |
+
|
64 |
class EventDetector:
|
65 |
def __init__(self):
|
66 |
+
try:
|
67 |
+
self.model_name = "google/mt5-small"
|
68 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
69 |
+
self.model_name,
|
70 |
+
legacy=True
|
71 |
+
)
|
72 |
+
self.model = None
|
73 |
+
self.finbert = None
|
74 |
+
self.roberta = None
|
75 |
+
self.finbert_tone = None
|
76 |
+
self.last_gpu_use = 0
|
77 |
+
self.initialized = False
|
78 |
+
logger.info("EventDetector initialized successfully")
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error in EventDetector initialization: {e}")
|
81 |
+
raise
|
82 |
|
83 |
+
@spaces.GPU(duration=30)
|
84 |
def initialize_models(self):
|
85 |
+
if self.initialized:
|
86 |
+
return True
|
87 |
+
|
88 |
try:
|
89 |
current_time = time.time()
|
90 |
if current_time - self.last_gpu_use < 2:
|
|
|
94 |
logger.info(f"Initializing models on device: {device}")
|
95 |
|
96 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
|
97 |
+
|
98 |
+
# Initialize sentiment models with proper error handling
|
99 |
+
try:
|
100 |
+
self.finbert = pipeline(
|
101 |
+
"sentiment-analysis",
|
102 |
+
model="ProsusAI/finbert",
|
103 |
+
device=device,
|
104 |
+
truncation=True,
|
105 |
+
max_length=512
|
106 |
+
)
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Error initializing finbert: {e}")
|
109 |
+
raise
|
110 |
+
|
111 |
+
try:
|
112 |
+
self.roberta = pipeline(
|
113 |
+
"sentiment-analysis",
|
114 |
+
model="cardiffnlp/twitter-roberta-base-sentiment",
|
115 |
+
device=device,
|
116 |
+
truncation=True,
|
117 |
+
max_length=512
|
118 |
+
)
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Error initializing roberta: {e}")
|
121 |
+
raise
|
122 |
+
|
123 |
+
try:
|
124 |
+
self.finbert_tone = pipeline(
|
125 |
+
"sentiment-analysis",
|
126 |
+
model="yiyanghkust/finbert-tone",
|
127 |
+
device=device,
|
128 |
+
truncation=True,
|
129 |
+
max_length=512
|
130 |
+
)
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Error initializing finbert_tone: {e}")
|
133 |
+
raise
|
134 |
|
135 |
self.last_gpu_use = time.time()
|
136 |
+
self.initialized = True
|
137 |
+
logger.info("All models initialized successfully")
|
138 |
return True
|
139 |
|
140 |
except Exception as e:
|
141 |
+
self.initialized = False
|
142 |
logger.error(f"Model initialization error: {str(e)}")
|
143 |
+
# Clean up any partially initialized models
|
144 |
+
self.cleanup()
|
145 |
+
raise
|
146 |
|
147 |
+
def cleanup(self):
|
148 |
+
"""Clean up GPU resources"""
|
149 |
+
try:
|
150 |
+
self.model = None
|
151 |
+
self.finbert = None
|
152 |
+
self.roberta = None
|
153 |
+
self.finbert_tone = None
|
154 |
+
torch.cuda.empty_cache()
|
155 |
+
self.initialized = False
|
156 |
+
except Exception as e:
|
157 |
+
logger.error(f"Error in cleanup: {e}")
|
158 |
+
|
159 |
+
@spaces.GPU(duration=20)
|
160 |
def detect_events(self, text, entity):
|
161 |
if not text or not entity:
|
162 |
return "Нет", "Invalid input"
|
163 |
|
164 |
try:
|
165 |
+
if not self.initialized:
|
166 |
+
if not self.initialize_models():
|
167 |
+
return "Нет", "Model initialization failed"
|
168 |
+
|
169 |
current_time = time.time()
|
170 |
if current_time - self.last_gpu_use < 2:
|
171 |
time.sleep(2)
|
|
|
|
|
172 |
|
173 |
+
text = text[:500] # Truncate text
|
174 |
+
|
175 |
+
prompt = f"""<s>Analyze the following news about {entity}:
|
176 |
+
Text: {text}
|
177 |
+
Task: Identify the main event type and provide a brief summary.</s>"""
|
178 |
+
|
179 |
+
device = self.model.device
|
180 |
+
inputs = self.tokenizer(
|
181 |
+
prompt,
|
182 |
+
return_tensors="pt",
|
183 |
+
padding=True,
|
184 |
+
truncation=True,
|
185 |
+
max_length=512
|
186 |
+
).to(device)
|
187 |
+
|
188 |
+
outputs = self.model.generate(
|
189 |
+
**inputs,
|
190 |
+
max_length=300,
|
191 |
+
num_return_sequences=1,
|
192 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
193 |
+
eos_token_id=self.tokenizer.eos_token_id
|
194 |
+
)
|
195 |
+
|
196 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
197 |
+
|
198 |
+
# Event classification
|
199 |
+
event_type = "Нет"
|
200 |
+
if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
|
201 |
+
event_type = "Отчетность"
|
202 |
+
elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
|
203 |
+
event_type = "РЦБ"
|
204 |
+
elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
|
205 |
+
event_type = "Суд"
|
206 |
+
|
207 |
self.last_gpu_use = time.time()
|
208 |
return event_type, response
|
209 |
|
|
|
348 |
control = ProcessControl()
|
349 |
|
350 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
351 |
+
gr.Markdown("# AI-анализ мониторинга новостей v.1.16")
|
352 |
|
353 |
with gr.Row():
|
354 |
file_input = gr.File(
|