Spaces:
Sleeping
Sleeping
File size: 19,107 Bytes
2412746 2e0c24f 2412746 ab25eb3 00a84c6 2e0c24f 2412746 43f24b5 2e0c24f bd72d6a 2e0c24f 2412746 706e736 ab25eb3 bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a cbb8180 bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a b719885 bd72d6a d32e04e bd72d6a d32e04e bd72d6a cbb8180 bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a d32e04e bd72d6a cbb8180 ab25eb3 6d4a64c d32e04e 6d4a64c 67890fd 6d4a64c 2412746 67890fd 2412746 6d4a64c 67890fd 6d4a64c d32e04e ab25eb3 d32e04e 67890fd ab25eb3 67890fd d32e04e 67890fd d32e04e ab25eb3 d32e04e 67890fd 2412746 d32e04e 67890fd 2412746 d32e04e 67890fd 2412746 ab25eb3 7d4f832 2412746 7d4f832 2412746 ab25eb3 2412746 ab25eb3 2412746 ab25eb3 2412746 ab25eb3 2412746 ab25eb3 2412746 30c87ad 2412746 25558c7 2412746 ab25eb3 2412746 ab25eb3 ccf48e2 8a76f7a bd72d6a b719885 21d6a34 8a76f7a bd72d6a ab25eb3 2412746 ab25eb3 6f609e4 ab25eb3 25558c7 67890fd ab25eb3 6f609e4 e032dc3 67890fd 21d6a34 67890fd ccf48e2 e032dc3 67890fd 75f4618 67890fd f06b820 67890fd ccf48e2 67890fd 25558c7 ccf48e2 67890fd b719885 e032dc3 21d6a34 8b2771c 25558c7 e032dc3 21d6a34 b719885 ab25eb3 8b2771c e032dc3 b719885 ab25eb3 e032dc3 30c87ad ab25eb3 8a76f7a ab25eb3 8a76f7a 2412746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import streamlit as st
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModel
import torch
from datetime import datetime
import io
import base64
from typing import Dict, List, Set, Tuple
from rapidfuzz import fuzz, process
from collections import defaultdict
from tqdm import tqdm
import spacy
import torch.nn.functional as F
class NewsProcessor:
def __init__(self, similarity_threshold=0.75, time_threshold=24):
try:
self.nlp = spacy.load("ru_core_news_sm")
except:
self.nlp = spacy.load("en_core_web_sm")
import pymorphy2
self.morph = pymorphy2.MorphAnalyzer()
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
self.model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
self.similarity_threshold = similarity_threshold
self.time_threshold = time_threshold
def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode_text(self, text):
# Convert text to string and handle NaN values
if pd.isna(text):
text = ""
else:
text = str(text)
encoded_input = self.tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
with torch.no_grad():
model_output = self.model(**encoded_input)
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask'])
return F.normalize(sentence_embeddings[0], p=2, dim=0).numpy()
def get_company_variants(self, company_name: str) -> Set[str]:
"""Generate morphological variants of company name."""
if pd.isna(company_name):
return set()
# Clean the company name
name = str(company_name).strip('"\'').strip()
name = name.split(',')[0].strip() # Take first part before comma
variants = set()
variants.add(name.lower())
# Split into words and get significant parts
words = [w for w in name.split() if len(w) >= 3]
# Generate morphological variants for each significant word
for word in words:
parsed = self.morph.parse(word)[0]
lexeme = parsed.lexeme
variants.update(v.word.lower() for v in lexeme)
# Add combinations of consecutive words
if len(words) > 1:
for i in range(len(words)-1):
variants.add(f"{words[i]} {words[i+1]}".lower())
return variants
def is_company_main_subject(self, title: str, text: str, company_name: str, threshold_score: float = 0.5) -> Tuple[bool, float]:
"""
Enhanced company subject detection using title and text with Russian language support.
Returns (is_main_subject, relevance_score).
"""
if pd.isna(text) or pd.isna(company_name):
return False, 0.0
# Ensure we have strings
title = str(title) if not pd.isna(title) else ""
text = str(text) if not pd.isna(text) else ""
# Get company name variants
company_variants = self.get_company_variants(company_name)
if not company_variants:
return False, 0.0
# Initialize scoring components
title_score = 0.0
first_para_score = 0.0
subject_score = 0.0
frequency_score = 0.0
# Process title (weight: 0.4)
title_doc = self.nlp(title.lower())
title_text = title_doc.text
for variant in company_variants:
if variant in title_text:
title_score = 0.4
# Check if company is subject in title
for token in title_doc:
if variant in token.text and token.dep_ in ['nsubj', 'nsubjpass']:
title_score = 0.4
break
break
# Process main text
doc = self.nlp(text.lower())
paragraphs = [p.strip() for p in text.split('\n') if p.strip()]
first_para = paragraphs[0] if paragraphs else ""
# Check first paragraph (weight: 0.2)
for variant in company_variants:
if variant in first_para.lower():
first_para_score = 0.2
break
# Analyze subject position and frequency
company_mentions = 0
subject_mentions = 0
other_company_indicators = {
'компания', 'корпорация', 'фирма', 'банк', 'группа', 'холдинг',
'организация', 'предприятие', 'производитель', 'ао', 'оао', 'пао', 'нк', 'гк',
'ооо', 'лк', 'фк', 'акб', 'ук', 'зао', 'ак'
}
other_companies = 0
# Analyze each sentence
for sent in doc.sents:
sent_text = sent.text.lower()
# Count company mentions and subject positions
company_in_sent = False
for variant in company_variants:
if variant in sent_text:
company_mentions += 1
company_in_sent = True
# Check subject position
for token in sent:
if variant in token.text and token.dep_ in ['nsubj', 'nsubjpass']:
subject_mentions += 1
# Count other company mentions
if company_in_sent:
continue
for indicator in other_company_indicators:
if indicator in sent_text:
other_companies += 1
break
# Calculate subject score (weight: 0.2)
subject_score = min(0.2, (subject_mentions / max(1, company_mentions)) * 0.2)
# Calculate frequency score (weight: 0.2)
if company_mentions > 0:
company_ratio = company_mentions / (company_mentions + other_companies + 1)
frequency_score = min(0.2, company_ratio * 0.2)
# Calculate final score
final_score = title_score + first_para_score + subject_score + frequency_score
# Apply penalties
if other_companies > 5: # Too many other companies mentioned
final_score *= 0.5
# Check if the company is just part of a list
list_indicators = {'среди', 'включая', 'такие как', 'в том числе', 'и другие', 'а также'}
for indicator in list_indicators:
if indicator in text.lower():
final_score *= 0.7
return final_score >= threshold_score, final_score
def process_news(self, df: pd.DataFrame, progress_bar=None):
# Ensure the DataFrame is not empty
if df.empty:
return pd.DataFrame(columns=['cluster_id', 'datetime', 'company', 'relevance_score', 'text', 'cluster_size'])
df = df.copy() # Make a copy to preserve original indices
clusters = []
processed = set()
for idx in df.index: # Iterate over original indices
if idx in processed:
continue
row1 = df.loc[idx]
cluster = [idx] # Store original index
processed.add(idx)
if not pd.isna(row1['text']):
text1_embedding = self.encode_text(row1['text'])
if progress_bar:
progress_bar.progress(len(processed) / len(df))
for other_idx in df.index: # Iterate over original indices
if other_idx in processed:
continue
row2 = df.loc[other_idx]
if pd.isna(row2['text']):
continue
time_diff = pd.to_datetime(row1['datetime']) - pd.to_datetime(row2['datetime'])
if abs(time_diff.total_seconds() / 3600) > self.time_threshold:
continue
text2_embedding = self.encode_text(row2['text'])
similarity = np.dot(text1_embedding, text2_embedding)
if similarity >= self.similarity_threshold:
cluster.append(other_idx)
processed.add(other_idx)
clusters.append(cluster)
# Create result DataFrame preserving original indices
result_data = []
for cluster_id, cluster_indices in enumerate(clusters, 1):
cluster_rows = df.loc[cluster_indices]
for idx in cluster_indices:
result_data.append({
'cluster_id': cluster_id,
'datetime': df.loc[idx, 'datetime'],
'company': df.loc[idx, 'company'],
'text': df.loc[idx, 'text'],
'cluster_size': len(cluster_indices)
})
result_df = pd.DataFrame(result_data, index=sum(clusters, [])) # Use original indices
return result_df
class NewsDeduplicator:
def __init__(self, fuzzy_threshold=85):
self.fuzzy_threshold = fuzzy_threshold
def deduplicate(self, df: pd.DataFrame, progress_bar=None) -> pd.DataFrame:
seen_texts: List[str] = []
text_to_companies: Dict[str, Set[str]] = defaultdict(set)
indices_to_keep: Set[int] = set()
for idx, row in tqdm(df.iterrows(), total=len(df)):
text = str(row['text']) if not pd.isna(row['text']) else ""
company = str(row['company']) if not pd.isna(row['company']) else ""
if not text:
indices_to_keep.add(idx)
continue
if seen_texts:
result = process.extractOne(
text,
seen_texts,
scorer=fuzz.ratio,
score_cutoff=self.fuzzy_threshold
)
match = result[0] if result else None
else:
match = None
if match:
text_to_companies[match].add(company)
else:
seen_texts.append(text)
text_to_companies[text].add(company)
indices_to_keep.add(idx)
if progress_bar:
progress_bar.progress((idx + 1) / len(df))
dedup_df = df.iloc[list(indices_to_keep)].copy()
for idx in indices_to_keep:
text = str(df.iloc[idx]['text'])
companies = sorted(text_to_companies[text])
dedup_df.at[idx, 'company'] = ' | '.join(companies)
dedup_df.at[idx, 'company_count'] = len(companies)
dedup_df.at[idx, 'duplicate_count'] = len(text_to_companies[text])
return dedup_df.sort_values('datetime')
def create_download_link(df: pd.DataFrame, filename: str) -> str:
excel_buffer = io.BytesIO()
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
df.to_excel(writer, index=False)
excel_buffer.seek(0)
b64 = base64.b64encode(excel_buffer.read()).decode()
return f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="{filename}">Download {filename}</a>'
def main():
st.title("кластеризуем новости v.1.23 + print debug")
st.write("Upload Excel file with columns: company, datetime, text")
uploaded_file = st.file_uploader("Choose Excel file", type=['xlsx'])
if uploaded_file:
try:
# Read all columns from original sheet
df_original = pd.read_excel(uploaded_file, sheet_name='Публикации')
st.write("Available columns:", df_original.columns.tolist())
# Create working copy with required columns
df = df_original.copy()
text_column = df_original.columns[6]
title_column = df_original.columns[5]
datetime_column = df_original.columns[3]
company_column = df_original.columns[0]
df = df_original[[company_column, datetime_column, title_column, text_column]].copy()
df.columns = ['company', 'datetime', 'title', 'text']
st.success(f'Loaded {len(df)} records')
st.dataframe(df.head())
col1, col2 = st.columns(2)
with col1:
fuzzy_threshold = st.slider("Fuzzy Match Threshold", 30, 100, 50)
with col2:
similarity_threshold = st.slider("Similarity Threshold", 0.5, 1.0, 0.75)
time_threshold = st.slider("Time Threshold (hours)", 1, 72, 24)
if st.button("Process News"):
try:
progress_bar = st.progress(0)
# Step 1: Deduplicate
deduplicator = NewsDeduplicator(fuzzy_threshold)
dedup_df = deduplicator.deduplicate(df, progress_bar)
# Preserve all columns from original DataFrame in dedup_df_full
dedup_df_full = df_original.loc[dedup_df.index].copy()
st.write("\nDeduplication Results:")
st.write(f"Original indices: {df.index.tolist()}")
st.write(f"Dedup indices: {dedup_df.index.tolist()}")
st.write(f"Sample from dedup_df:")
st.write(dedup_df[['company', 'text']].head())
# Step 2: Cluster deduplicated news
processor = NewsProcessor(similarity_threshold, time_threshold)
result_df = processor.process_news(dedup_df, progress_bar)
st.write("\nClustering Results:")
st.write(f"Result df indices: {result_df.index.tolist()}")
# Display cluster information
if len(result_df) > 0:
st.write("\nCluster Details:")
for cluster_id in result_df['cluster_id'].unique():
cluster_mask = result_df['cluster_id'] == cluster_id
if sum(cluster_mask) > 1: # Only show multi-item clusters
cluster_indices = result_df[cluster_mask].index.tolist()
st.write(f"\nCluster {cluster_id}:")
st.write(f"Indices: {cluster_indices}")
# Show texts for verification
for idx in cluster_indices:
text_length = len(str(dedup_df.loc[idx, 'text']))
st.write(f"Index {idx} - Length {text_length}:")
st.write(str(dedup_df.loc[idx, 'text'])[:100] + '...')
# Process clusters for deletion
indices_to_delete = set()
if len(result_df) > 0:
for cluster_id in result_df['cluster_id'].unique():
cluster_mask = result_df['cluster_id'] == cluster_id
if sum(cluster_mask) > 1:
cluster_indices = result_df[cluster_mask].index.tolist()
text_lengths = dedup_df.loc[cluster_indices, 'text'].fillna('').str.len()
longest_text_idx = text_lengths.idxmax()
indices_to_delete.update(set(cluster_indices) - {longest_text_idx})
st.write("\nDeletion Summary:")
st.write(f"Indices to delete: {sorted(list(indices_to_delete))}")
# Create final DataFrame
declustered_df = dedup_df_full.copy()
if indices_to_delete:
declustered_df = declustered_df.drop(index=list(indices_to_delete))
st.write(f"Final indices kept: {sorted(declustered_df.index.tolist())}")
# Print statistics
st.success(f"""
Processing results:
- Original rows: {len(df_original)}
- After deduplication: {len(dedup_df_full)}
- Multi-item clusters found: {len(result_df[result_df['cluster_size'] > 1]['cluster_id'].unique()) if len(result_df) > 0 else 0}
- Rows removed from clusters: {len(indices_to_delete)}
- Final rows kept: {len(declustered_df)}
""")
# Download buttons for all results
st.subheader("Download Results")
st.markdown(create_download_link(dedup_df_full, "deduplicated_news.xlsx"), unsafe_allow_html=True)
st.markdown(create_download_link(result_df, "clustered_news.xlsx"), unsafe_allow_html=True)
st.markdown(create_download_link(declustered_df, "declustered_news.xlsx"), unsafe_allow_html=True)
# Show clusters info
if len(result_df) > 0:
st.subheader("Largest Clusters")
largest_clusters = result_df[result_df['cluster_size'] > 1].sort_values(
['cluster_size', 'cluster_id', 'datetime'],
ascending=[False, True, True]
)
st.dataframe(largest_clusters)
except Exception as e:
st.error(f"Error: {str(e)}")
import traceback
st.error(traceback.format_exc())
finally:
progress_bar.empty()
except Exception as e:
st.error(f"Error reading file: {str(e)}")
import traceback
st.error(traceback.format_exc())
if __name__ == "__main__":
main() |