import plotly.graph_objects as go import textwrap import re from collections import defaultdict def generate_subplot1(paraphrased_sentence, masked_sentences, strategies, highlight_info, common_grams): """ Generates a subplot visualizing paraphrased and masked sentences in a tree structure. Highlights common words with specific colors and applies Longest Common Subsequence (LCS) numbering. Args: paraphrased_sentence (str): The paraphrased sentence to be visualized. masked_sentences (list of str): A list of masked sentences to be visualized. strategies (list of str, optional): List of strategies used for each masked sentence. highlight_info (list of tuples): A list of tuples where each tuple contains a word and its associated color for highlighting. common_grams (list of tuples): A list of tuples containing an index and a common word or phrase for LCS numbering. Returns: plotly.graph_objects.Figure: A Plotly figure representing the tree structure with highlighted words and labeled edges. """ # Combine nodes into one list with appropriate labels if isinstance(masked_sentences, str): masked_sentences = [masked_sentences] nodes = [paraphrased_sentence] + masked_sentences nodes[0] += ' L0' # Paraphrased sentence is level 0 if len(nodes) < 2: print("[ERROR] Insufficient nodes for visualization") return go.Figure() for i in range(1, len(nodes)): nodes[i] += ' L1' # masked sentences are level 1 def apply_lcs_numbering(sentence, common_grams): """ Applies LCS numbering to the sentence based on the common_grams. Args: sentence (str): The sentence to which the LCS numbering should be applied. common_grams (list of tuples): A list of common grams to be replaced with LCS numbers. Returns: str: The sentence with LCS numbering applied. """ for idx, lcs in common_grams: sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence) return sentence # Apply LCS numbering nodes = [apply_lcs_numbering(node, common_grams) for node in nodes] def highlight_words(sentence, color_map): """ Highlights words in the sentence based on the color_map. Args: sentence (str): The sentence where the words will be highlighted. color_map (dict): A dictionary mapping words to their colors. Returns: str: The sentence with highlighted words. """ for word, color in color_map.items(): sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE) return sentence # Clean and wrap nodes, and highlight specified words globally cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes] global_color_map = dict(highlight_info) highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes] wrapped_nodes = ['
'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes] def get_levels_and_edges(nodes, strategies=None): """ Determines tree levels and creates edges dynamically. Args: nodes (list of str): The nodes representing the sentences. strategies (list of str, optional): The strategies used for each edge. Returns: tuple: A tuple containing two dictionaries: - levels: A dictionary mapping node indices to their levels. - edges: A list of edges where each edge is represented by a tuple of node indices. """ levels = {} edges = [] for i, node in enumerate(nodes): level = int(node.split()[-1][1]) levels[i] = level # Add edges from L0 to all L1 nodes root_node = next((i for i, level in levels.items() if level == 0), 0) for i, level in levels.items(): if level == 1: edges.append((root_node, i)) return levels, edges # Get levels and dynamic edges levels, edges = get_levels_and_edges(nodes, strategies) max_level = max(levels.values(), default=0) # Calculate positions positions = {} level_heights = defaultdict(int) for node, level in levels.items(): level_heights[level] += 1 y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()} x_gap = 2 l1_y_gap = 10 for node, level in levels.items(): if level == 1: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) else: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) y_offsets[level] += 1 def color_highlighted_words(node, color_map): """ Colors the highlighted words in the node text. Args: node (str): The node text to be highlighted. color_map (dict): A dictionary mapping words to their colors. Returns: str: The node text with highlighted words. """ parts = re.split(r'(\{\{.*?\}\})', node) colored_parts = [] for part in parts: match = re.match(r'\{\{(.*?)\}\}', part) if match: word = match.group(1) color = color_map.get(word, 'black') colored_parts.append(f"{word}") else: colored_parts.append(part) return ''.join(colored_parts) # Define the text for each edge default_edge_texts = [ "Highest Entropy Masking", "Pseudo-random Masking", "Random Masking", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling" ] if len(nodes) < 2: print("[ERROR] Insufficient nodes for visualization") return go.Figure() # Create figure fig1 = go.Figure() # Add nodes to the figure for i, node in enumerate(wrapped_nodes): colored_node = color_highlighted_words(node, global_color_map) x, y = positions[i] fig1.add_trace(go.Scatter( x=[-x], # Reflect the x coordinate y=[y], mode='markers', marker=dict(size=20, color='blue', line=dict(color='black', width=2)), hoverinfo='none' )) fig1.add_annotation( x=-x, # Reflect the x coordinate y=y, text=colored_node, showarrow=False, xshift=15, align="center", font=dict(size=12), bordercolor='black', borderwidth=2, borderpad=4, bgcolor='white', width=400, height=100 ) # Add edges and text above each edge for i, edge in enumerate(edges): x0, y0 = positions[edge[0]] x1, y1 = positions[edge[1]] # Use strategy if available, otherwise use default edge text if strategies and i < len(strategies): edge_text = strategies[i] else: edge_text = default_edge_texts[i % len(default_edge_texts)] fig1.add_trace(go.Scatter( x=[-x0, -x1], # Reflect the x coordinates y=[y0, y1], mode='lines', line=dict(color='black', width=1) )) # Calculate the midpoint of the edge mid_x = (-x0 + -x1) / 2 mid_y = (y0 + y1) / 2 # Adjust y position to shift text upwards text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards # Add text annotation above the edge fig1.add_annotation( x=mid_x, y=text_y_position, text=edge_text, # Use the text specific to this edge showarrow=False, font=dict(size=12), align="center" ) fig1.update_layout( showlegend=False, margin=dict(t=50, b=50, l=50, r=50), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), width=800 + max_level * 200, # Adjusted width to accommodate more levels height=300 + len(nodes) * 100, # Adjusted height to accommodate more levels plot_bgcolor='rgba(240,240,240,0.2)', paper_bgcolor='white' ) return fig1 def generate_subplot2(masked_sentences, sampled_sentences, highlight_info, common_grams): """ Generates a subplot visualizing multiple masked sentences and their sampled variants in a tree structure. Each masked sentence will have multiple sampled sentences derived from it using different sampling techniques. Args: masked_sentences (list of str): A list of masked sentences to be visualized as root nodes. sampled_sentences (list of str): A list of sampled sentences derived from masked sentences. highlight_info (list of tuples): A list of tuples where each tuple contains a word and its associated color for highlighting. common_grams (list of tuples): A list of tuples containing an index and a common word or phrase for LCS numbering. Returns: plotly.graph_objects.Figure: A Plotly figure representing the tree structure with highlighted words and labeled edges. """ # Define sampling techniques sampling_techniques = [ "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling" ] # Calculate total number of nodes num_masked = len(masked_sentences) num_sampled_per_masked = len(sampling_techniques) total_nodes = num_masked + (num_masked * num_sampled_per_masked) # Combine all sentences into nodes list with appropriate labels nodes = [] # Level 0: masked sentences (root nodes) nodes.extend([s + ' L0' for s in masked_sentences]) # Level 1: sampled sentences (branch nodes) # For each masked sentence, we should have samples from each technique sampled_nodes = [] # Validate if we have the expected number of sampled sentences expected_sampled_count = num_masked * num_sampled_per_masked if len(sampled_sentences) < expected_sampled_count: # If insufficient samples provided, pad with placeholder sentences print(f"Warning: Expected {expected_sampled_count} sampled sentences, but got {len(sampled_sentences)}") while len(sampled_sentences) < expected_sampled_count: sampled_sentences.append(f"Placeholder sampled sentence {len(sampled_sentences) + 1}") # Add all sampled sentences with level information for s in sampled_sentences[:expected_sampled_count]: sampled_nodes.append(s + ' L1') nodes.extend(sampled_nodes) def apply_lcs_numbering(sentence, common_grams): """ Applies LCS numbering to the sentence based on the common_grams. """ for idx, lcs in common_grams: sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence) return sentence # Apply LCS numbering nodes = [apply_lcs_numbering(node, common_grams) for node in nodes] def highlight_words(sentence, color_map): """ Highlights words in the sentence based on the color_map. """ for word, color in color_map.items(): sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE) return sentence # Helper function to color highlighted words def color_highlighted_words(node, color_map): """ Colors the highlighted words in the node text. """ parts = re.split(r'(\{\{.*?\}\})', node) colored_parts = [] for part in parts: match = re.match(r'\{\{(.*?)\}\}', part) if match: word = match.group(1) color = color_map.get(word, 'black') colored_parts.append(f"{word}") else: colored_parts.append(part) return ''.join(colored_parts) # Clean nodes, highlight words, and wrap text cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes] global_color_map = dict(highlight_info) highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes] wrapped_nodes = ['
'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes] # Generate edges based on the tree structure def get_levels_and_edges(nodes): levels = {} edges = [] # Extract level info from node labels for i, node in enumerate(nodes): level = int(node.split()[-1][1]) levels[i] = level # Create edges from masked sentences to their sampled variants for masked_idx in range(num_masked): # For each masked sentence, create edges to its sampled variants for technique_idx in range(num_sampled_per_masked): sampled_idx = num_masked + (masked_idx * num_sampled_per_masked) + technique_idx if sampled_idx < len(nodes): edges.append((masked_idx, sampled_idx)) return levels, edges levels, edges = get_levels_and_edges(nodes) # Calculate positions with improved spacing positions = {} # Calculate horizontal spacing for the root nodes (masked sentences) root_x_spacing = 0 # All root nodes at x=0 root_y_spacing = 8.0 # Vertical spacing between root nodes # Calculate positions for sampled nodes sampled_x = 3 # X position for all sampled nodes # Calculate y positions for root nodes (masked sentences) root_y_start = -(num_masked - 1) * root_y_spacing / 2 for i in range(num_masked): positions[i] = (root_x_spacing, root_y_start + i * root_y_spacing) # Calculate y positions for sampled nodes for masked_idx in range(num_masked): root_y = positions[masked_idx][1] # Y position of parent masked sentence # Calculate y-spacing for children of this root children_y_spacing = 1.5 # Vertical spacing between children of the same root children_y_start = root_y - (num_sampled_per_masked - 1) * children_y_spacing / 2 # Position each child for technique_idx in range(num_sampled_per_masked): child_idx = num_masked + (masked_idx * num_sampled_per_masked) + technique_idx child_y = children_y_start + technique_idx * children_y_spacing positions[child_idx] = (sampled_x, child_y) # Create figure fig2 = go.Figure() # Add nodes for i, node in enumerate(wrapped_nodes): x, y = positions[i] # Define node color based on level node_color = 'blue' if levels[i] == 0 else 'green' # Add the node marker fig2.add_trace(go.Scatter( x=[x], y=[y], mode='markers', marker=dict(size=20, color=node_color, line=dict(color='black', width=2)), hoverinfo='none' )) # Add node label with highlighting colored_node = color_highlighted_words(node, global_color_map) fig2.add_annotation( x=x, y=y, text=colored_node, showarrow=False, xshift=15, align="left", font=dict(size=12), bordercolor='black', borderwidth=2, borderpad=4, bgcolor='white', width=400, height=100 ) # Add edges with labels for i, (src, dst) in enumerate(edges): x0, y0 = positions[src] x1, y1 = positions[dst] # Draw the edge fig2.add_trace(go.Scatter( x=[x0, x1], y=[y0, y1], mode='lines', line=dict(color='black', width=1) )) # Add sampling technique label # Determine which sampling technique this is parent_idx = src technique_count = sum(1 for k, (s, _) in enumerate(edges) if s == parent_idx and k < i) technique_label = sampling_techniques[technique_count % len(sampling_techniques)] # Calculate midpoint for the label mid_x = (x0 + x1) / 2 mid_y = (y0 + y1) / 2 # Add slight offset to avoid overlap label_offset = 0.1 fig2.add_annotation( x=mid_x, y=mid_y + label_offset, text=technique_label, showarrow=False, font=dict(size=8), align="center" ) # Update layout fig2.update_layout( showlegend=False, margin=dict(t=20, b=20, l=20, r=20), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), width=1200, # Adjusted width to accommodate more levels height=2000, # Adjusted height to accommodate more levels plot_bgcolor='rgba(240,240,240,0.2)', paper_bgcolor='white' ) return fig2 if __name__ == "__main__": paraphrased_sentence = "The quick brown fox jumps over the lazy dog." masked_sentences = [ "A fast brown fox leaps over the lazy dog.", "A quick brown fox hops over a lazy dog." ] highlight_info = [ ("quick", "red"), ("brown", "green"), ("fox", "blue"), ("lazy", "purple") ] common_grams = [ (1, "quick brown fox"), (2, "lazy dog") ] fig1 = generate_subplot1(paraphrased_sentence, masked_sentences, highlight_info, common_grams) fig1.show() sampled_sentence = ["A fast brown fox jumps over a lazy dog."] fig2 = generate_subplot2(masked_sentences, sampled_sentence, highlight_info, common_grams) fig2.show()