""" This file contains the code to plot a 3d tree """ import numpy as np import plotly.graph_objects as go from scipy.interpolate import griddata def gen_three_D_plot(detectability_val, distortion_val, euclidean_val): """ Generates a 3D surface plot showing the relationship between detectability, distortion, and Euclidean distance, with a focus on highlighting the "sweet spot" based on a composite score. The function takes three sets of values: detectability, distortion, and Euclidean distance, normalizes them to a [0, 1] range, and computes a composite score that combines these three metrics. The "sweet spot" is the point where the composite score is maximized. This sweet spot is plotted as a red marker on the 3D surface plot. The function then uses a grid interpolation method (`griddata`) to generate a smooth surface for the Euclidean distance over the detectability and distortion values. The result is a surface plot where the contours represent different Euclidean distances. Args: detectability_val (list or array): A list or array of detectability scores. distortion_val (list or array): A list or array of distortion scores. euclidean_val (list or array): A list or array of Euclidean distances. Returns: plotly.graph_objects.Figure: A Plotly figure object representing the 3D surface plot, with contour lines and a marker for the sweet spot. Raises: ValueError: If `griddata` fails to generate a valid interpolation, which could happen if the input data does not allow for a proper interpolation. Example: # Example of usage: detectability_vals = [0.1, 0.3, 0.5, 0.7, 0.9] distortion_vals = [0.2, 0.4, 0.6, 0.8, 1.0] euclidean_vals = [0.5, 0.3, 0.2, 0.4, 0.6] fig = gen_three_D_plot(detectability_vals, distortion_vals, euclidean_vals) fig.show() # Displays the plot in a web browser Notes: - The composite score is calculated as: `composite_score = norm_detectability - (norm_distortion + norm_euclidean)`, where the goal is to maximize detectability and minimize distortion and Euclidean distance. - The `griddata` function uses linear interpolation to create a smooth surface for the plot. - The function uses the "Plasma" colorscale for the surface plot, which provides a perceptually uniform color scheme. """ detectability = np.array(detectability_val) distortion = np.array(distortion_val) euclidean = np.array(euclidean_val) # Normalize the values to range [0, 1] norm_detectability = (detectability - min(detectability)) / (max(detectability) - min(detectability)) norm_distortion = (distortion - min(distortion)) / (max(distortion) - min(distortion)) norm_euclidean = (euclidean - min(euclidean)) / (max(euclidean) - min(euclidean)) # Composite score: maximize detectability, minimize distortion and Euclidean distance composite_score = norm_detectability - (norm_distortion + norm_euclidean) # Find the index of the maximum score (sweet spot) sweet_spot_index = np.argmax(composite_score) # Sweet spot values sweet_spot_detectability = detectability[sweet_spot_index] sweet_spot_distortion = distortion[sweet_spot_index] sweet_spot_euclidean = euclidean[sweet_spot_index] # Create a meshgrid from the data x_grid, y_grid = np.meshgrid(np.linspace(min(detectability), max(detectability), 30), np.linspace(min(distortion), max(distortion), 30)) # Interpolate z values (Euclidean distances) to fit the grid using 'nearest' method z_grid = griddata((detectability, distortion), euclidean, (x_grid, y_grid), method='nearest') if z_grid is None: raise ValueError("griddata could not generate a valid interpolation. Check your input data.") # Create the 3D contour plot with the Plasma color scale fig = go.Figure(data=go.Surface( z=z_grid, x=x_grid, y=y_grid, contours={ "z": {"show": True, "start": min(euclidean), "end": max(euclidean), "size": 0.1, "usecolormap": True} }, colorscale='Plasma' )) # Add a marker for the sweet spot fig.add_trace(go.Scatter3d( x=[sweet_spot_detectability], y=[sweet_spot_distortion], z=[sweet_spot_euclidean], mode='markers+text', marker=dict(size=10, color='red', symbol='circle'), text=["Sweet Spot"], textposition="top center" )) # Set axis labels fig.update_layout( scene=dict( xaxis_title='Detectability Score', yaxis_title='Distortion Score', zaxis_title='Euclidean Distance' ), margin=dict(l=0, r=0, b=0, t=0) ) return fig if __name__ == "__main__": # Example input data detectability_vals = [0.1, 0.3, 0.5, 0.7, 0.9] distortion_vals = [0.2, 0.4, 0.6, 0.8, 1.0] euclidean_vals = [0.5, 0.3, 0.2, 0.4, 0.6] # Call the function with example data fig = gen_three_D_plot(detectability_vals, distortion_vals, euclidean_vals) # Show the plot fig.show()