File size: 50,659 Bytes
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
 
 
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca020a1
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca020a1
1375034
ca020a1
 
 
 
1375034
ecbc109
1375034
 
 
 
 
 
 
 
 
 
ca020a1
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc109
 
 
 
 
1375034
 
 
 
 
 
ca020a1
1375034
ca020a1
 
 
 
1375034
ecbc109
1375034
 
 
 
 
 
 
 
 
 
 
 
ecbc109
1375034
 
 
 
 
 
ecbc109
1375034
 
 
 
ca020a1
 
 
 
1375034
ecbc109
1375034
ecbc109
 
 
 
 
 
 
 
 
 
ca020a1
 
 
 
 
ecbc109
1375034
ca020a1
 
 
 
 
1375034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
"use strict";
var __create = Object.create;
var __defProp = Object.defineProperty;
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
var __getOwnPropNames = Object.getOwnPropertyNames;
var __getProtoOf = Object.getPrototypeOf;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __export = (target, all) => {
  for (var name in all)
    __defProp(target, name, { get: all[name], enumerable: true });
};
var __copyProps = (to, from, except, desc) => {
  if (from && typeof from === "object" || typeof from === "function") {
    for (let key of __getOwnPropNames(from))
      if (!__hasOwnProp.call(to, key) && key !== except)
        __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
  }
  return to;
};
var __toESM = (mod, isNodeMode, target) => (target = mod != null ? __create(__getProtoOf(mod)) : {}, __copyProps(
  // If the importer is in node compatibility mode or this is not an ESM
  // file that has been converted to a CommonJS file using a Babel-
  // compatible transform (i.e. "__esModule" has not been set), then set
  // "default" to the CommonJS "module.exports" for node compatibility.
  isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", { value: mod, enumerable: true }) : target,
  mod
));
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);

// src/index.ts
var src_exports = {};
__export(src_exports, {
  TrustMark: () => TrustMark
});
module.exports = __toCommonJS(src_exports);

// src/trustmark.ts
var import_node_fs = require("fs");
var import_node_crypto = require("crypto");
var ort = __toESM(require("onnxruntime-node"), 1);
var tf = __toESM(require("@tensorflow/tfjs-node"), 1);

// src/bchecc.ts
var BCH = class {
  ECCstate;
  /**
   * Initializes the ECC state with given parameters.
   * @param {number} t - Number of error correctable bits, max number of bit flips we can account for, increasing this increase the ecc length
   * @param {number} poly - The polynomial used for ECC.
   */
  constructor(t, poly) {
    let tmp = poly;
    let m = 0;
    while (tmp >> 1) {
      tmp = tmp >> 1;
      m += 1;
    }
    this.ECCstate = {
      m,
      t,
      poly
    };
    this.ECCstate.n = Math.pow(2, m) - 1;
    const words = Math.ceil(m * t / 32);
    this.ECCstate.ecc_bytes = Math.ceil(m * t / 8);
    this.ECCstate.cyclic_tab = new Array(words * 1024).fill(BigInt(0));
    this.ECCstate.syn = new Array(2 * t).fill(0);
    this.ECCstate.elp = new Array(t + 1).fill(0);
    this.ECCstate.errloc = new Array(t).fill(0);
    let x = 1;
    const k = Math.pow(2, this.deg(poly));
    if (k !== Math.pow(2, this.ECCstate.m)) {
      return;
    }
    this.ECCstate.exponents = new Array(1 + this.ECCstate.n).fill(0);
    this.ECCstate.logarithms = new Array(1 + this.ECCstate.n).fill(0);
    this.ECCstate.elp_pre = new Array(1 + this.ECCstate.m).fill(0);
    for (let i2 = 0; i2 < this.ECCstate.n; i2++) {
      this.ECCstate.exponents[i2] = x;
      this.ECCstate.logarithms[x] = i2;
      if (i2 && x === 1) {
        return;
      }
      x *= 2;
      if (x & k) {
        x ^= poly;
      }
    }
    this.ECCstate.logarithms[0] = 0;
    this.ECCstate.exponents[this.ECCstate.n] = 1;
    let n = 0;
    const g = { deg: 0, c: new Array(m * t + 1).fill(BigInt(0)) };
    const roots = new Array(this.ECCstate.n + 1).fill(0);
    const genpoly = new Array(Math.ceil(m * t + 1 / 32)).fill(BigInt(0));
    for (let i2 = 0; i2 < t; i2++) {
      let r = 2 * i2 + 1;
      for (let j = 0; j < m; j++) {
        roots[r] = 1;
        r = this.mod(this, 2 * r);
      }
    }
    g.deg = 0;
    g.c[0] = BigInt(1);
    for (let i2 = 0; i2 < this.ECCstate.n; i2++) {
      if (roots[i2]) {
        const r = this.ECCstate.exponents[i2];
        g.c[g.deg + 1] = BigInt(1);
        for (let j = g.deg; j > 0; j--) {
          g.c[j] = this.g_mul(this, g.c[j], r) ^ g.c[j - 1];
        }
        g.c[0] = this.g_mul(this, g.c[0], r);
        g.deg += 1;
      }
    }
    n = g.deg + 1;
    let i = 0;
    while (n > 0) {
      const nbits = n > 32 ? 32 : n;
      let word = BigInt(0);
      for (let j = 0; j < nbits; j++) {
        if (g.c[n - 1 - j]) {
          word |= BigInt(Math.pow(2, 31 - j));
        }
      }
      genpoly[i] = word;
      i += 1;
      n -= nbits;
    }
    this.ECCstate.ecc_bits = g.deg;
    this.buildCyclic(genpoly);
    let sum = 0;
    let aexp = 0;
    for (let i2 = 0; i2 < m; i2++) {
      for (let j = 0; j < m; j++) {
        sum ^= this.g_pow(this, i2 * Math.pow(2, j));
      }
      if (sum) {
        aexp = this.ECCstate.exponents[i2];
        break;
      }
    }
    x = 0;
    const precomp = new Array(31).fill(0);
    let remaining = m;
    while (x <= this.ECCstate.n && remaining) {
      let y = this.g_sqrt(this, x) ^ x;
      for (let i2 = 0; i2 < 2; i2++) {
        const r = this.g_log(this, y);
        if (y && r < m && !precomp[r]) {
          this.ECCstate.elp_pre[r] = x;
          precomp[r] = 1;
          remaining -= 1;
          break;
        }
        y ^= aexp;
      }
      x += 1;
    }
  }
  /**
   * Encodes the data and generates ECC bytes.
   * @param {number[]} data - The input data array.
   * @returns {Uint8Array} - The generated ECC bytes.
   */
  encode(data) {
    let bigIntData = this.convertAllBitsToBigInts(data, 8);
    const datalen = bigIntData.length;
    const l = this.ceilop(this.ECCstate.m * this.ECCstate.t, 32) - 1;
    let ecc = new Array(this.getEccBytes()).fill(0);
    const ecc_max_words = this.ceilop(31 * 64, 32);
    const r = new Array(ecc_max_words).fill(BigInt(0));
    const tab0idx = 0;
    const tab1idx = tab0idx + 256 * (l + 1);
    const tab2idx = tab1idx + 256 * (l + 1);
    const tab3idx = tab2idx + 256 * (l + 1);
    let mlen = Math.floor(datalen / 4);
    let offset = 0;
    while (mlen > 0) {
      let w = this.convertBytesToBigInt(bigIntData.slice(offset, offset + 4));
      w ^= r[0];
      const p0 = tab0idx + (l + 1) * Number(w >> BigInt(0) & BigInt(255));
      const p1 = tab1idx + (l + 1) * Number(w >> BigInt(8) & BigInt(255));
      const p2 = tab2idx + (l + 1) * Number(w >> BigInt(16) & BigInt(255));
      const p3 = tab3idx + (l + 1) * Number(w >> BigInt(24) & BigInt(255));
      for (let i = 0; i < l; i++) {
        r[i] = r[i + 1] ^ this.ECCstate.cyclic_tab[Number(p0) + i] ^ this.ECCstate.cyclic_tab[Number(p1) + i] ^ this.ECCstate.cyclic_tab[Number(p2) + i] ^ this.ECCstate.cyclic_tab[Number(p3) + i];
      }
      r[l] = this.ECCstate.cyclic_tab[Number(p0) + l] ^ this.ECCstate.cyclic_tab[Number(p1) + l] ^ this.ECCstate.cyclic_tab[Number(p2) + l] ^ this.ECCstate.cyclic_tab[Number(p3) + l];
      mlen--;
      offset += 4;
    }
    bigIntData = bigIntData.slice(offset);
    let leftdata = bigIntData.length;
    ecc = r;
    let posn = 0;
    while (leftdata) {
      const tmp = bigIntData[posn];
      posn++;
      let pidx = (l + 1) * Number(ecc[0] >> BigInt(24) ^ tmp & BigInt(255));
      for (let i = 0; i < l; i++) {
        ecc[i] = (ecc[i] << BigInt(8) & BigInt(4294967295) | ecc[i + 1] >> BigInt(24)) ^ this.ECCstate.cyclic_tab[Number(pidx)];
        pidx++;
      }
      ecc[l] = ecc[l] << BigInt(8) & BigInt(4294967295) ^ this.ECCstate.cyclic_tab[Number(pidx)];
      leftdata--;
    }
    this.ECCstate.ecc_buf = ecc;
    let eccout = [];
    for (const e of r) {
      eccout.push(Number(e >> BigInt(24)) & 255);
      eccout.push(Number(e >> BigInt(16)) & 255);
      eccout.push(Number(e >> BigInt(8)) & 255);
      eccout.push(Number(e >> BigInt(0)) & 255);
    }
    eccout = eccout.slice(0, this.getEccBytes());
    const eccbytes = new Uint8Array(eccout);
    return eccbytes;
  }
  /**
   * Decodes the data and corrects errors using ECC.
   * @param {number[]} data - The input data array.
   * @param {Uint8Array} recvecc - The received ECC data.
   * @returns {any} - The corrected data and status.
   */
  decode(data, recvecc) {
    this.encode(data);
    const eccbuf = this.convertAllBitsToBigInts(Array.from(recvecc), 32);
    const eccwords = this.ceilop(this.ECCstate.m * this.ECCstate.t, 32);
    let sum = BigInt(0);
    for (let i = 0; i < eccwords; i++) {
      this.ECCstate.ecc_buf[i] = this.ECCstate.ecc_buf[i] ^ eccbuf[i];
      sum = sum | this.ECCstate.ecc_buf[i];
    }
    const dataout = this.convertAllBitsToBigInts(data, 8);
    if (sum === BigInt(0)) {
      return {
        bitflips: 0,
        valid: true,
        binary: this.toBinString(dataout, data.length),
        hex: this.toHexString(dataout, data.length),
        ascii: this.toAsciiString(dataout)
      };
    }
    let s = this.ECCstate.ecc_bits;
    let t = this.ECCstate.t;
    const syn = new Array(2 * t).fill(0);
    const m = s & 31;
    const synbuf = this.ECCstate.ecc_buf;
    if (m) {
      synbuf[Math.floor(s / 32)] = synbuf[Math.floor(s / 32)] & ~BigInt(Math.pow(2, Number(32 - m)) - 1);
    }
    let synptr = 0;
    while (s > 0 || synptr === 0) {
      let poly = synbuf[synptr];
      synptr += 1;
      s -= 32;
      while (poly) {
        const i = this.degBigInt(poly);
        for (let j = 0; j < 2 * t; j += 2) {
          syn[j] = syn[j] ^ this.g_pow(this, (j + 1) * (i + s));
        }
        poly = poly ^ BigInt(Math.pow(2, i));
      }
    }
    for (let i = 0; i < t; i++) {
      syn[2 * i + 1] = this.g_sqrt(this, syn[i]);
    }
    const n = this.ECCstate.n;
    t = this.ECCstate.t;
    let pp = -1;
    let pd = 1;
    let pelp = { deg: 0, c: new Array(2 * t).fill(0) };
    pelp.c[0] = 1;
    const elp = { deg: 0, c: new Array(2 * t).fill(0) };
    elp.c[0] = 1;
    let d = syn[0];
    let elp_copy;
    for (let i = 0; i < t; i++) {
      if (elp.deg > t) {
        break;
      }
      if (d) {
        const k = 2 * i - pp;
        elp_copy = JSON.parse(JSON.stringify(elp));
        let tmp = this.g_log(this, d) + n - this.g_log(this, pd);
        for (let j = 0; j <= pelp.deg; j++) {
          if (pelp.c[j] !== BigInt(0)) {
            const l = this.g_log(this, pelp.c[j]);
            elp.c[j + k] = elp.c[j + k] ^ this.g_pow(this, tmp + l);
          }
        }
        tmp = pelp.deg + k;
        if (tmp > elp.deg) {
          elp.deg = tmp;
          pelp = JSON.parse(JSON.stringify(elp_copy));
          pd = d;
          pp = 2 * i;
        }
      }
      if (i < t - 1) {
        d = syn[2 * i + 2];
        for (let j = 1; j <= elp.deg; j++) {
          d = d ^ this.g_mul(this, elp.c[j], syn[2 * i + 2 - j]);
        }
      }
    }
    this.ECCstate.elp = elp;
    const nroots = this.getRoots(this, dataout.length, this.ECCstate.elp);
    const datalen = dataout.length;
    const nbits = datalen * 8 + this.ECCstate.ecc_bits;
    if (nroots === -1) {
      return { valid: false };
    }
    for (let i = 0; i < nroots; i++) {
      if (this.ECCstate.errloc[i] >= nbits) {
        return -1;
      }
      this.ECCstate.errloc[i] = nbits - 1 - this.ECCstate.errloc[i];
      this.ECCstate.errloc[i] = this.ECCstate.errloc[i] & ~7 | 7 - (this.ECCstate.errloc[i] & 7);
    }
    for (const bitflip of this.ECCstate.errloc) {
      const byte = Math.floor(bitflip / 8);
      const bit = Math.pow(2, bitflip & 7);
      if (bitflip < (dataout.length + recvecc.length) * 8) {
        if (byte < dataout.length) {
          dataout[byte] = dataout[byte] ^ BigInt(bit);
        } else {
          recvecc[byte - dataout.length] = recvecc[byte - dataout.length] ^ bit;
        }
      }
    }
    return {
      bitflips: nroots,
      valid: true,
      binary: this.toBinString(dataout, data.length),
      hex: this.toHexString(dataout, data.length),
      ascii: this.toAsciiString(dataout)
    };
  }
  /**
   * Finds the roots of a polynomial.
   * @param {any} instance - The instance of the ECC state.
   * @param {number} k - The degree of the polynomial.
   * @param {any} poly - The polynomial.
   * @returns {number} - The number of roots found.
   */
  getRoots(instance, k, poly) {
    const roots = [];
    if (poly.deg > 2) {
      k = k * 8 + instance.ECCstate.ecc_bits;
      const rep = new Array(instance.ECCstate.t * 2).fill(0);
      const d = poly.deg;
      const l = instance.ECCstate.n - this.g_log(instance, poly.c[poly.deg]);
      for (let i = 0; i < d; i++) {
        if (poly.c[i]) {
          rep[i] = this.mod(instance, this.g_log(instance, poly.c[i]) + l);
        } else {
          rep[i] = -1;
        }
      }
      rep[poly.deg] = 0;
      const syn0 = this.g_div(instance, poly.c[0], poly.c[poly.deg]);
      for (let i = instance.ECCstate.n - k + 1; i < instance.ECCstate.n + 1; i++) {
        let syn = syn0;
        for (let j = 1; j < poly.deg + 1; j++) {
          const m = rep[j];
          if (m >= 0) {
            syn = syn ^ this.g_pow(instance, m + j * i);
          }
        }
        if (syn === 0) {
          roots.push(instance.ECCstate.n - i);
          if (roots.length === poly.deg) {
            break;
          }
        }
      }
      if (roots.length < poly.deg) {
        instance.ECCstate.errloc = [];
        return -1;
      }
    }
    if (poly.deg === 1) {
      if (poly.c[0]) {
        roots.push(
          this.mod(
            instance,
            instance.ECCstate.n - instance.ECCstate.logarithms[poly.c[0]] + instance.ECCstate.logarithms[poly.c[1]]
          )
        );
      }
    }
    if (poly.deg === 2) {
      if (poly.c[0] && poly.c[1]) {
        const l0 = instance.ECCstate.logarithms[poly.c[0]];
        const l1 = instance.ECCstate.logarithms[poly.c[1]];
        const l2 = instance.ECCstate.logarithms[poly.c[2]];
        const u = this.g_pow(instance, l0 + l2 + 2 * (instance.ECCstate.n - l1));
        let r = 0;
        let v = u;
        while (v) {
          const i = this.deg(v);
          r = r ^ instance.ECCstate.elp_pre[i];
          v = v ^ Math.pow(2, i);
        }
        if (this.g_sqrt(instance, r) ^ Number(r === u)) {
          roots.push(this.modn(instance, 2 * instance.ECCstate.n - l1 - instance.ECCstate.logarithms[r] + l2));
          roots.push(this.modn(instance, 2 * instance.ECCstate.n - l1 - instance.ECCstate.logarithms[r ^ 1] + l2));
        }
      }
    }
    instance.ECCstate.errloc = roots;
    return roots.length;
  }
  /**
   * Gets the number of ECC bits.
   * @returns {number} - The number of ECC bits.
   */
  getEccBits() {
    return this.ECCstate.ecc_bits;
  }
  /**
   * Gets the number of ECC bytes.
   * @returns {number} - The number of ECC bytes.
   */
  getEccBytes() {
    return Math.ceil(this.ECCstate.m * this.ECCstate.t / 8);
  }
  /**
   * Builds a cyclic table for error correction.
   * @param {bigint[]} g - The generator polynomial.
   */
  buildCyclic(g) {
    const l = Math.ceil(this.ECCstate.m * this.ECCstate.t / 32);
    const plen = Math.ceil((this.ECCstate.ecc_bits + 1) / 32);
    const ecclen = Math.ceil(this.ECCstate.ecc_bits / 32);
    this.ECCstate.cyclic_tab = new Array(4 * 256 * l).fill(BigInt(0));
    for (let i = 0; i < 256; i++) {
      for (let b = 0; b < 4; b++) {
        const offset = (b * 256 + i) * l;
        let data = BigInt(i) << BigInt(8 * b);
        while (data) {
          const d = this.degBigInt(data);
          data ^= g[0] >> BigInt(31 - d);
          for (let j = 0; j < ecclen; j++) {
            let hi, lo;
            if (d < 31) {
              hi = BigInt(g[j] << BigInt(d + 1)) & BigInt(4294967295);
            } else {
              hi = BigInt(0);
            }
            if (j + 1 < plen) {
              lo = g[j + 1] >> BigInt(31 - d);
            } else {
              lo = BigInt(0);
            }
            if (this.ECCstate.cyclic_tab[j + offset] === BigInt(0)) {
              this.ECCstate.cyclic_tab[j + offset] = BigInt(0);
            }
            this.ECCstate.cyclic_tab[j + offset] ^= hi | lo;
          }
        }
      }
    }
  }
  /** GALOIS OPERATIONS */
  /**
   * Computes the power of a value in a Galois field.
   * @param instance - The current context containing Galois field parameters.
   * @param i - The exponent value.
   * @returns The result of raising a value to the power i in the Galois field.
   */
  g_pow(instance, i) {
    return instance.ECCstate.exponents[this.modn(instance, i)];
  }
  /**
   * Computes the square root of a value in a Galois field.
   * @param instance - The current context containing Galois field parameters.
   * @param a - The value whose square root is to be computed.
   * @returns The square root of the value in the Galois field.
   */
  g_sqrt(instance, a) {
    if (a) {
      return instance.ECCstate.exponents[this.mod(instance, 2 * instance.ECCstate.logarithms[a])];
    } else {
      return 0;
    }
  }
  /**
   * Computes the logarithm of a value in a Galois field.
   * @param instance - The current context containing Galois field parameters.
   * @param x - The value whose logarithm is to be computed.
   * @returns The logarithm of the value in the Galois field.
   */
  g_log(instance, x) {
    return instance.ECCstate.logarithms[x];
  }
  /**
   * Multiplies two values in a Galois field.
   * @param instance - The current context containing Galois field parameters.
   * @param a - The first value to be multiplied.
   * @param b - The second value to be multiplied.
   * @returns The product of the two values in the Galois field.
   */
  g_mul(instance, a, b) {
    if (a > 0 && b > 0) {
      const res = this.mod(instance, instance.ECCstate.logarithms[a] + instance.ECCstate.logarithms[b]);
      return instance.ECCstate.exponents[res];
    } else {
      return 0;
    }
  }
  /**
   * Divides two values in a Galois field.
   * @param instance - The current context containing Galois field parameters.
   * @param a - The dividend.
   * @param b - The divisor.
   * @returns The quotient of the division in the Galois field.
   */
  g_div(instance, a, b) {
    if (a) {
      return instance.ECCstate.exponents[this.mod(instance, instance.ECCstate.logarithms[a] + instance.ECCstate.n - instance.ECCstate.logarithms[b])];
    } else {
      return 0;
    }
  }
  /**
   * Reduces a value modulo the Galois field size.
   * @param instance - The current context containing Galois field parameters.
   * @param v - The value to be reduced.
   * @returns The value reduced modulo the Galois field size.
   */
  mod(instance, v) {
    if (v < instance.ECCstate.n) {
      return v;
    } else {
      return v - instance.ECCstate.n;
    }
  }
  /**
   * Reduces a value modulo the Galois field size.
   * @param instance - The current context containing Galois field parameters.
   * @param v - The value to be reduced.
   * @returns The value reduced modulo the Galois field size.
   */
  modn(instance, v) {
    const n = instance.ECCstate.n;
    while (v >= n) {
      v -= n;
      v = (v & n) + (v >> instance.ECCstate.m);
    }
    return v;
  }
  /**
   * Computes the degree of a polynomial represented as an integer.
   * @param x - The polynomial represented as an integer.
   * @returns The degree of the polynomial.
   */
  deg(x) {
    let count = 0;
    while (x >> 1) {
      x = x >> 1;
      count += 1;
    }
    return count;
  }
  /**
   * Computes the ceiling of the division of two integers.
   * @param a - The dividend.
   * @param b - The divisor.
   * @returns The ceiling of the division of a by b.
   */
  ceilop(a, b) {
    return Math.floor((a + b - 1) / b);
  }
  /**
   * Computes the degree of a polynomial represented as a BigInt.
   * @param x - The polynomial represented as a BigInt.
   * @returns The degree of the polynomial.
   */
  degBigInt(x) {
    let count = 0;
    while (x >> BigInt(1)) {
      x = x >> BigInt(1);
      count += 1;
    }
    return count;
  }
  /**
   * Converts an array of bits into a single BigInt value.
   * @param {number[]} bitArray - The array of bits to convert.
   * @param {number} bitLimit - The maximum number of bits to process.
   * @returns {BigInt} - The combined value of all bits in the array.
   */
  convertBitsToBigInt(bitArray, bitLimit) {
    let result = BigInt(0);
    if (bitLimit < bitArray.length) {
      bitLimit = bitArray.length;
    }
    let pos = bitLimit - 1;
    for (let b = 0; b < bitLimit; b++) {
      if (bitArray[b]) {
        result += BigInt(1) << BigInt(pos);
      }
      pos--;
    }
    return result;
  }
  /**
   * Processes an array of bits in chunks, converting each chunk into a BigInt.
   * @param {number[]} bitArray - The array of bits to process.
   * @param {number} chunkSize - The size of each chunk of bits to process.
   * @returns {BigInt[]} - An array of BigInt values representing chunks of the original bit array.
   */
  convertAllBitsToBigInts(bitArray, chunkSize) {
    const dataLength = bitArray.length;
    let numChunks = Math.floor(dataLength / chunkSize);
    const resultArray = [];
    let offset = 0;
    while (numChunks > 0) {
      const chunk = bitArray.slice(offset, offset + chunkSize);
      const bigInt = this.convertBitsToBigInt(chunk, chunkSize);
      resultArray.push(bigInt);
      offset += chunkSize;
      numChunks--;
    }
    const remainingBitsArray = bitArray.slice(offset);
    if (remainingBitsArray.length > 0) {
      const bigInt = this.convertBitsToBigInt(remainingBitsArray, chunkSize);
      resultArray.push(bigInt);
    }
    return resultArray;
  }
  /**
   * Converts an array of up to 4 bytes into a single BigInt value.
   * @param {bigint[]} byteArray - The array of bytes to convert.
   * @returns {BigInt} - The combined value of the bytes as a BigInt.
   */
  convertBytesToBigInt(byteArray) {
    let result = BigInt(0);
    if (byteArray.length > 0) result += byteArray[0] << BigInt(24);
    if (byteArray.length > 1) result += byteArray[1] << BigInt(16);
    if (byteArray.length > 2) result += byteArray[2] << BigInt(8);
    if (byteArray.length > 3) result += byteArray[3];
    return result;
  }
  /**
   * Generates a binary string from data.
   * @param {any[]} dataout - The data output array.
   * @param {number} datalen - The desired length of the binary string.
   * @returns {string} - The binary string representation of the data.
   */
  toBinString(dataout, datalen) {
    let out = "";
    for (const byte of dataout) {
      out += this.numberToBinaryString(byte, 8);
    }
    out = out.slice(0, datalen);
    return out;
  }
  /**
   * Converts a number to a binary string of a given length.
   * @param {number} num - The number to convert.
   * @param {number} length - The desired length of the binary string.
   * @returns {string} - The binary string representation of the number.
   */
  numberToBinaryString(num, length) {
    let binaryString = num.toString(2);
    while (binaryString.length < length) {
      binaryString = "0" + binaryString;
    }
    return binaryString;
  }
  /**
   * Decodes a Uint8Array to a string using 7-bit ASCII encoding.
   * @param {Uint8Array} data - The input byte array.
   * @returns {string} - The decoded string.
   */
  toAsciiString(data) {
    const textBitStr = data.map((byte) => byte.toString(2).padStart(8, "0")).join("");
    const textInt7 = [];
    for (let i = 0; i < textBitStr.length; i += 7) {
      const bitSegment = textBitStr.slice(i, i + 7);
      textInt7.push(parseInt(bitSegment, 2));
    }
    const textBytes = new Uint8Array(textInt7);
    const decodedText = new TextDecoder("utf-8").decode(textBytes).replace(/\0/g, "");
    return decodedText;
  }
  /**
   * Converts an array of numbers to a hexadecimal string.
   * @param {any[]} data - The array of numbers to convert.
   * @returns {string} - The hexadecimal string representation of the numbers.
   */
  toHexString(data, datalen) {
    if (data.length > datalen / 8) {
      data.pop();
    }
    return data.map(function(byte) {
      byte = Number(byte);
      if (byte > 15) return (byte & 255).toString(16);
      else return "0" + (byte & 255).toString(16);
    }).join("");
  }
};

// src/datalayer.ts
var BCH_POLYNOMIAL = 137;
var DataLayer = class {
  payload_len;
  // Length of the payload in bits
  encoding_mode;
  // Encoding mode to be used
  versionbits;
  // Number of bits for the schema version
  bch_encoder;
  // BCH encoder instance
  bch_decoders;
  // Dictionary of BCH decoders for different schemas
  /**
   * Initializes the DataLayer with specified parameters.
   * @param {number} payload_len - The length of the payload in bits.
   * @param {boolean} verbose - Flag to indicate if messages should be logged.
   * @param {number} encoding_mode - The encoding mode to be used (default is 0).
   */
  constructor(payload_len, verbose, encoding_mode) {
    this.bch_encoder = this.buildBCH(encoding_mode);
    this.encoding_mode = encoding_mode;
    this.versionbits = 4;
    this.bch_decoders = {};
    for (let i = 0; i < 4; i++) {
      this.bch_decoders[i] = this.buildBCH(i);
    }
    this.payload_len = payload_len;
  }
  /**
   * Builds and returns a BCH instance based on the given encoding mode.
   *
   * @param encoding_mode The encoding mode.
   * @returns A BCH instance configured for the specified encoding mode.
   */
  buildBCH(encoding_mode) {
    switch (encoding_mode) {
      case 1:
        return new BCH(5, BCH_POLYNOMIAL);
      case 2:
        return new BCH(4, BCH_POLYNOMIAL);
      case 3:
        return new BCH(3, BCH_POLYNOMIAL);
      default:
        return new BCH(8, BCH_POLYNOMIAL);
    }
  }
  /**
   * Encodes a text string into a Float32Array with the ECC encoding.
   * @param {string} text - The input text string.
   * @returns {Float32Array} - The encoded Float32Array.
   */
  encodeText(text) {
    const data = this.encodeAscii(text);
    const packet_d = Array.from(data).map((x) => x.toString(2).padStart(8, "0")).join("");
    return this.encodePacket(packet_d);
  }
  /**
   * Encodes a binary string into a Float32Array with the ECC encoding.
   * @param {string} strbin - The input binary string.
   * @returns {Float32Array} - The encoded Float32Array with the ECC encoding.
   */
  encodeBinary(strbin) {
    return this.encodePacket(String(strbin));
  }
  /**
   * Processes and encodes the packet data.
   * @param {string} packet_d - The binary string representation of the packet data.
   * @returns {Float32Array} - The encoded Float32Array.
   */
  encodePacket(packet_d) {
    const data_bitcount = this.payload_len - this.bch_encoder.getEccBits() - this.versionbits;
    const ecc_bitcount = this.bch_encoder.getEccBits();
    packet_d = packet_d.substring(0, data_bitcount);
    packet_d = packet_d.padEnd(data_bitcount, "0");
    const pad_d = packet_d.length % 8 === 0 ? 0 : 8 - packet_d.length % 8;
    const paddedpacket_d = packet_d + "0".repeat(pad_d);
    const padded_data = Array.from(paddedpacket_d.split("").map(Number));
    const ecc = this.bch_encoder.encode(padded_data);
    let packet_e = Array.from(ecc).map((x) => x.toString(2).padStart(8, "0")).join("");
    packet_e = packet_e.substring(0, ecc_bitcount);
    const pad_e = packet_e.length % 8 === 0 || this.encoding_mode !== 0 ? 0 : 8 - packet_e.length % 8;
    packet_e = packet_e.padEnd(packet_e.length + pad_e, "0");
    const version = this.encoding_mode;
    const packet_v = version.toString(2).padStart(4, "0");
    let packet = packet_d + packet_e + packet_v;
    packet = packet.split("").map((x) => parseInt(x, 10)).join("");
    if (this.payload_len !== packet.length) {
      throw new Error("Error! Could not form complete packet");
    }
    return new Float32Array(packet.split("").map(Number));
  }
  /**
   * Encodes a string to a Float32Array using 7-bit ASCII encoding.
   * @param {string} text - The input text string.
   * @returns {Float32Array} - The encoded Float32Array.
   */
  encodeAscii(text) {
    const textInt7 = Array.from(text).map((t) => t.charCodeAt(0) & 127);
    let textBitStr = textInt7.map((t) => t.toString(2).padStart(7, "0")).join("");
    if (textBitStr.length % 8 !== 0) {
      textBitStr = textBitStr.padEnd(textBitStr.length + (8 - textBitStr.length % 8), "0");
    }
    const byteArray = [];
    for (let i = 0; i < textBitStr.length; i += 8) {
      byteArray.push(parseInt(textBitStr.slice(i, i + 8), 2));
    }
    return new Float32Array(byteArray);
  }
};
function getSchemaCapacity(schema_version) {
  switch (schema_version) {
    case 0:
      return 40;
    case 1:
      return 61;
    case 2:
      return 68;
    case 3:
      return 75;
    default:
      throw new Error("Invalid schema version");
  }
}
function getSchemaVersion(binary_array) {
  const last_two_bits = binary_array.slice(-2);
  const version = last_two_bits[0] * 2 + last_two_bits[1];
  return version;
}

// src/ONNX_HUB_MANIFEST.json
var ONNX_HUB_MANIFEST_default = [
  {
    model: "Trustmark variant Q encoder",
    model_name: "encoder_Q.onnx",
    model_remote_host: "https://cc-assets.netlify.app",
    model_path: "/watermarking/trustmark-models/encoder_Q.onnx",
    onnx_version: "1.9.0",
    opset_version: 17,
    metadata: {
      model_sha: "19b3d1b25836130ffd78775a8f61539f993375d1823ef0e59ba5b8dffb4f892d",
      model_bytes: 17312208,
      tags: ["watermarking"],
      io_ports: {
        inputs: [
          {
            name: " onnx::Concat_0",
            shape: [1, 3, 256, 256],
            type: "tensor(float)"
          },
          {
            name: "onnx::Gemm_1",
            shape: [1, 100],
            type: "tensor(float)"
          }
        ],
        outputs: [
          {
            name: "image",
            shape: [1, 3, 256, 256],
            type: "tensor(float)"
          }
        ]
      }
    }
  },
  {
    model: "Trustmark variant P encoder",
    model_name: "encoder_P.onnx",
    model_remote_host: "https://cc-assets.netlify.app",
    model_path: "/watermarking/trustmark-models/encoder_P.onnx",
    onnx_version: "1.9.0",
    opset_version: 17,
    metadata: {
      model_sha: "053441c9c9f05fc158ccba71c610d9d58fcd2c82d1912bf0ffcee988cf2f74c8",
      model_bytes: 17312208,
      tags: ["watermarking"],
      io_ports: {
        inputs: [
          {
            name: " onnx::Concat_0",
            shape: [1, 3, 256, 256],
            type: "tensor(float)"
          },
          {
            name: "onnx::Gemm_1",
            shape: [1, 100],
            type: "tensor(float)"
          }
        ],
        outputs: [
          {
            name: "image",
            shape: [1, 3, 256, 256],
            type: "tensor(float)"
          }
        ]
      }
    }
  },
  {
    model: "Trustmark variant Q decoder",
    model_name: "decoder_Q.onnx",
    model_remote_host: "https://cc-assets.netlify.app",
    model_path: "/watermarking/trustmark-models/decoder_Q.onnx",
    onnx_version: "1.9.0",
    opset_version: 17,
    metadata: {
      model_sha: "ee3268f057c9dabef680e169302f5973d0589feea86189ed229a896cc3aa88df",
      model_bytes: 47401222,
      tags: ["watermarking"],
      io_ports: {
        inputs: [
          {
            name: "image",
            shape: [1, 3, 256, 256],
            type: "tensor(float)"
          }
        ],
        outputs: [
          {
            name: "output",
            shape: [1, 100],
            type: "tensor(float)"
          }
        ]
      }
    }
  },
  {
    model: "Trustmark variant P decoder",
    model_name: "decoder_P.onnx",
    model_remote_host: "https://cc-assets.netlify.app",
    model_path: "/watermarking/trustmark-models/decoder_P.onnx",
    onnx_version: "1.9.0",
    opset_version: 17,
    metadata: {
      model_sha: "be6d7c33f8a7b376f179e75f3f7c58ff816a9ac7bb6d37fd0a729a635f624c35",
      model_bytes: 47400467,
      tags: ["watermarking"],
      io_ports: {
        inputs: [
          {
            name: "image",
            shape: [1, 3, 224, 224],
            type: "tensor(float)"
          }
        ],
        outputs: [
          {
            name: "output",
            shape: [1, 100],
            type: "tensor(float)"
          }
        ]
      }
    }
  }
];

// src/trustmark.ts
var MODELS_PATH = "models/";
var ASPECT_RATIO_LIM = 2;
var IS_BROWSER = false;
var IS_NODE = false;
if (typeof window === "undefined") {
  IS_NODE = true;
} else {
  IS_BROWSER = true;
}
var VERBOSE = true;
var TrustMark = class _TrustMark {
  /** * Static encoding mapping for different BCH modes. */
  static encoding = {
    undefined: -1,
    BCH_SUPER: 0,
    BCH_3: 3,
    BCH_4: 2,
    BCH_5: 1
  };
  use_ecc;
  secret_len;
  ecc;
  decoder_session;
  encoder_session;
  preprocess_224_session;
  preprocess_256_session;
  model_type;
  /**
   * Constructs a new TrustMark instance.
   * @param {boolean} [use_ecc=true] - use BCH error correction on the payload, reducing payload size (default)
   * @param {number} [secret_len=100] - The length of the secret.
   * @param {number} [encoding_mode=TrustMark.encoding.BCH_4] - The data schema encoding mode to use.
   */
  constructor(use_ecc = true, secret_len = 100, encoding_mode = _TrustMark.encoding.BCH_4) {
    this.use_ecc = use_ecc;
    this.secret_len = secret_len;
    this.ecc = new DataLayer(secret_len, VERBOSE, encoding_mode);
  }
  /**
   * Decodes the watermark of an image from a given URL.
   *
   * @param image_url The URL of the image to decode.
   * @returns A promise that resolves to the decoded watermnark data.
   */
  async decode(image_url) {
    tf.engine().startScope();
    const stego_image = await this.loadImage(image_url, "decode");
    await sleep(0);
    tf.engine().endScope();
    const input_feeds = { image: stego_image.onnx };
    const start_time = /* @__PURE__ */ new Date();
    const model_output = await this.decoder_session.run(input_feeds);
    const time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Prediction: ${time_elapsed}ms`);
    await sleep(0);
    const output_data = model_output.output.cpuData;
    const binary_array = output_data.map((value) => value >= 0 ? 1 : 0);
    const schema = getSchemaVersion(binary_array);
    let data_bits = getSchemaCapacity(schema);
    let data = binary_array.slice(0, data_bits);
    let ecc = binary_array.slice(data_bits, 96);
    let decoded_data = this.ecc.bch_decoders[schema].decode(data, ecc);
    decoded_data.schema = schema;
    if (!decoded_data.valid) {
      for (let alt_schema = 0; alt_schema < 3; alt_schema++) {
        if (alt_schema === schema) continue;
        data_bits = getSchemaCapacity(alt_schema);
        data = binary_array.slice(0, data_bits);
        ecc = binary_array.slice(data_bits, 96);
        decoded_data = this.ecc.bch_decoders[alt_schema].decode(data, ecc);
        decoded_data.schema = alt_schema;
        if (decoded_data.valid) {
          break;
        }
      }
    }
    decoded_data.raw = binary_array;
    return decoded_data;
  }
  /**
   * Encodes a secret into an image and returns the stego image and the residual image.
   *
   * @param {string} image_url The cover image data.
   * @param {string} string_secret The secret string to encode.
   * @param {number} wm_strength The watermark strength. Default is 0.4.
   * @param {boolean} maculate Whether to overwrite an existing watermark with random values. Default is false.
   * @param {string} output The output format. Default is 'bytes'.
   * @returns A promise that resolves with the encoded data or rejects with an error.
   */
  async encode(image_url, string_secret, wm_strength = 0.4, maculate = false, output = "bytes") {
    tf.engine().startScope();
    const cover_image = await this.loadImage(image_url, "encode");
    let mode;
    let secret = new Float32Array(100);
    if (maculate === true) {
      mode = "binary";
      secret.set(
        Float32Array.from({ length: 96 }, () => Math.round(Math.random())),
        0
      );
      secret.set([0, 0, 0, 0], 96);
    } else {
      const binary_count = string_secret.match(/[01]/g);
      if (binary_count && binary_count.length == string_secret.length) {
        mode = "binary";
      } else {
        mode = "text";
      }
      if (!this.use_ecc) {
        if (mode === "binary") {
          secret = new Float32Array(Array.from(string_secret).map(Number));
        } else {
          secret = this.ecc.encodeAscii(string_secret);
          secret = new Float32Array(Array.from(secret).map(Number));
        }
      } else {
        if (mode === "binary") {
          secret = this.ecc.encodeBinary(string_secret);
        } else {
          secret = this.ecc.encodeText(string_secret);
        }
      }
    }
    cover_image.onnx_secret = new ort.Tensor("float32", secret, [1, 100]);
    const input_feeds = { "onnx::Concat_0": cover_image.onnx, "onnx::Gemm_1": cover_image.onnx_secret };
    let start_time = /* @__PURE__ */ new Date();
    const model_output = await this.encoder_session.run(input_feeds);
    let time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Inference: ${time_elapsed}ms`);
    await sleep(0);
    start_time = /* @__PURE__ */ new Date();
    const tf_cover = tf.tensor(cover_image.onnx.cpuData, [1, 3, 256, 256]);
    const tf_stego = tf.tensor(model_output.image.cpuData, [1, 3, 256, 256]);
    let tf_residual = tf.clipByValue(tf_stego, -1, 1).sub(tf_cover).squeeze().transpose([1, 2, 0]);
    tf_cover.dispose();
    tf_stego.dispose();
    if (IS_NODE && VERBOSE || IS_BROWSER) {
      const residual_display = tf_residual.mul(10).clipByValue(0, 1);
      if (IS_NODE) {
        if (output == "png") {
          cover_image.residual = await tf.node.encodePng(residual_display.mul(255));
        } else {
          cover_image.residual = await tf.browser.toPixels(residual_display);
        }
      } else {
        cover_image.residual = await tf.browser.toPixels(residual_display);
      }
      residual_display.dispose();
    }
    tf_residual = tf.image.resizeBilinear(tf_residual, [cover_image.crop_height, cover_image.crop_width]);
    time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Residual Interpolation: ${time_elapsed}ms`);
    await sleep(0);
    start_time = /* @__PURE__ */ new Date();
    let tf_merge = tf.clipByValue(tf.add(tf_residual.mul(wm_strength), cover_image.tf_crop), 0, 1);
    if (cover_image.aspect_ratio > 2 || this.model_type == "P") {
      if (cover_image.orientation == "landscape") {
        const axe_length = Math.floor((cover_image.width - cover_image.crop_axe) / 2);
        const part_a = cover_image.tf_source.slice([0, 0, 0], [cover_image.crop_axe, axe_length, 3]);
        const part_b = cover_image.tf_source.slice(
          [0, axe_length + cover_image.crop_axe, 0],
          [cover_image.crop_axe, cover_image.width - axe_length - cover_image.crop_axe, 3]
        );
        tf_merge = tf.concat([part_a, tf_merge, part_b], 1);
      }
      if (cover_image.orientation == "portrait") {
        const axe_length = Math.floor((cover_image.height - cover_image.crop_axe) / 2);
        const part_a = cover_image.tf_source.slice([0, 0, 0], [axe_length, cover_image.crop_axe, 3]);
        const part_b = cover_image.tf_source.slice(
          [axe_length + cover_image.crop_axe, 0, 0],
          [cover_image.height - axe_length - cover_image.crop_axe, cover_image.crop_axe, 3]
        );
        tf_merge = tf.concat([part_a, tf_merge, part_b], 0);
      }
    }
    cover_image.tf_crop.dispose();
    tf_residual.dispose();
    time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Compositing: ${time_elapsed}ms`);
    await sleep(0);
    start_time = /* @__PURE__ */ new Date();
    if (IS_NODE) {
      if (output == "png") {
        cover_image.stego = await tf.node.encodePng(tf_merge.mul(255));
      } else {
        cover_image.stego = await tf.browser.toPixels(tf_merge);
      }
    } else {
      cover_image.stego = await tf.browser.toPixels(tf_merge);
    }
    time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Encoding: ${time_elapsed}ms`);
    await sleep(0);
    tf.engine().endScope();
    return {
      stego: cover_image.stego,
      residual: cover_image.residual ? cover_image.residual : new Uint8Array(),
      height: cover_image.height,
      width: cover_image.width
    };
  }
  /**
   * Processes the input image based on the specified processing type.
   *
   * @param {any} image - The image object containing the tensor source and other properties.
   * @param {string} process_type - The type of processing to be applied to the image ('decode' or other types).
   * @returns {Promise<any>} A promise that resolves with the processed image.
   * @throws {Error} Throws an error if there is an issue processing the image.
   */
  async processImage(image2, process_type) {
    const start_time = /* @__PURE__ */ new Date();
    image2.width = image2.tf_source.shape[2];
    image2.height = image2.tf_source.shape[1];
    if (image2.width > image2.height) {
      image2.orientation = "landscape";
      image2.aspect_ratio = image2.width / image2.height;
    } else {
      image2.orientation = "portrait";
      image2.aspect_ratio = image2.height / image2.width;
    }
    if (image2.aspect_ratio > ASPECT_RATIO_LIM || this.model_type == "P") {
      const size = Math.min(image2.width, image2.height);
      const left = (image2.width - size) / 2;
      const top = (image2.height - size) / 2;
      image2.tf_crop = tf.image.cropAndResize(
        image2.tf_source,
        [[top / image2.height, left / image2.width, (top + size) / image2.height, (left + size) / image2.width]],
        [0],
        [size, size],
        "nearest"
      );
      image2.crop_axe = image2.crop_width = image2.crop_height = size;
    } else {
      image2.tf_crop = image2.tf_source;
      image2.crop_width = image2.width;
      image2.crop_height = image2.height;
    }
    image2.tf_source = image2.tf_source.squeeze();
    image2.tf_crop = image2.tf_crop.transpose([0, 3, 1, 2]);
    const data = image2.tf_crop.dataSync();
    const onnxTensor = new ort.Tensor("float32", data, image2.tf_crop.shape);
    image2.tf_crop = image2.tf_crop.transpose([0, 2, 3, 1]);
    image2.tf_crop = image2.tf_crop.squeeze();
    if (this.model_type == "P" && process_type == "decode") {
      image2.onnx = (await this.preprocess_224_session.run({ input: onnxTensor })).output;
    } else {
      image2.onnx = (await this.preprocess_256_session.run({ input: onnxTensor })).output;
    }
    await sleep(0);
    const time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
    tsLog(`Processing: ${image2.width}x${image2.height}: ${time_elapsed}ms`);
    return image2;
  }
  /**
   * Loads an image from a URL or filesystem and processes it based on the specified type.
   *
   * @param {string} image_url - The URL or filesystem path of the image to be loaded.
   * @param {string} process_type - The type of processing to be applied to the image.
   * @returns {Promise<any>} A promise that resolves with the processed image.
   * @throws {Error} Throws an error if there is an issue loading or processing the image.
   */
  async loadImage(image_url, process_type) {
    return new Promise(async (resolve) => {
      const start_time = /* @__PURE__ */ new Date();
      const image2 = { url: image_url };
      if (IS_NODE) {
        const image_buffer = (0, import_node_fs.readFileSync)(image2.url);
        image2.tf_source = tf.node.decodeImage(image_buffer).expandDims(0).div(255);
      } else {
        const img = new Image();
        img.onload = async () => {
          image2.tf_source = tf.browser.fromPixels(img).expandDims(0).div(255);
          const time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
          tsLog(`Loading: ${time_elapsed}ms`);
          resolve(await this.processImage(image2, process_type));
        };
        img.src = image2.url;
      }
      if (IS_NODE) {
        const time_elapsed = (/* @__PURE__ */ new Date()).getTime() - start_time.getTime();
        tsLog(`Loading: ${time_elapsed}ms`);
        resolve(await this.processImage(image2, process_type));
      }
    });
  }
  /**
   * Loads the necessary models based on the specified type.
   *
   * @param {string} [type='Q'] - The type of models to load ('Q' or 'P').
   * @throws {Error} Throws an error if there is an issue loading any of the models.
   */
  async loadModels(type = "Q") {
    const models = await getModels();
    let decoder_model_url;
    let encoder_model_url;
    this.model_type = type;
    if (type == "Q") {
      decoder_model_url = models["decoder_Q.onnx"];
      encoder_model_url = models["encoder_Q.onnx"];
    }
    if (type == "P") {
      decoder_model_url = models["decoder_P.onnx"];
      encoder_model_url = models["encoder_P.onnx"];
      this.preprocess_224_session = await ort.InferenceSession.create("models/preprocess_224.onnx").catch(
        (error) => {
          throw new Error(`Error loading preprocessing ONNX model: ${error}`);
        }
      );
    }
    const session_option = { executionProviders: ["cpu"] };
    this.preprocess_256_session = await ort.InferenceSession.create("models/preprocess_256.onnx").catch(
      (error) => {
        throw new Error(`Error loading preprocessing ONNX model: ${error}`);
      }
    );
    this.decoder_session = await ort.InferenceSession.create(decoder_model_url, session_option).catch((error) => {
      throw new Error(`Error loading decoder ONNX model: ${error}`);
    });
    this.encoder_session = await ort.InferenceSession.create(encoder_model_url, session_option).catch((error) => {
      throw new Error(`Error loading encoder ONNX model: ${error}`);
    });
  }
};
async function getModels() {
  return new Promise(async (resolve, reject) => {
    const fetchs = [];
    const models = {};
    for (const model of ONNX_HUB_MANIFEST_default) {
      const model_url = model.model_remote_host + model.model_path;
      const model_path = MODELS_PATH + model.model_name;
      const model_bytes = model.metadata.model_bytes;
      if (IS_NODE) {
        if ((0, import_node_fs.existsSync)(model_path)) {
          models[model.model_name] = model_path;
        } else {
          tsLog(`'${model_path}' needs to be fetched and cached from remote repository.`);
          fetchs.push(fetchModel(model_url, model_path, model.model_name, model.metadata.model_sha, model_bytes));
        }
      } else {
        await restoreFileFromCache(model.model_name).then((file) => {
          models[model.model_name] = file;
        }).catch((e) => {
          tsLog(model.model_name + " needs to be fetched and cached from remote repository.");
          fetchs.push(fetchModel(model_url, model_path, model.model_name, model.metadata.model_sha, model_bytes));
        });
      }
    }
    await Promise.all(fetchs).then((fmodels) => {
      fmodels.forEach(function(fmodel) {
        models[fmodel.model_name] = fmodel.path;
      });
    }).catch((err) => reject(err));
    resolve(models);
  });
}
async function fetchModel(url, file_path, model_name, checksum, model_bytes) {
  return new Promise(async (resolve, reject) => {
    fetch(url).then((response) => {
      return response.body;
    }).then((body) => {
      const reader = body.getReader();
      let charsReceived = 0;
      return new ReadableStream({
        async start(controller) {
          return pump();
          function pump() {
            return reader.read().then(({ done, value }) => {
              if (done) {
                controller.close();
                return;
              }
              charsReceived += value.length;
              const progress_percentage = Math.floor(charsReceived / model_bytes * 100);
              if (IS_NODE) {
                process.stdout.clearLine(0);
                process.stdout.cursorTo(0);
                process.stdout.write(`Progress: ${drawProgressBar(progress_percentage)} of ${model_name}`);
              } else {
                tsLog(`Loading model: ${progress_percentage}% of ${file_path}`, true);
              }
              controller.enqueue(value);
              return pump();
            });
          }
        }
      });
    }).then((stream) => new Response(stream)).then((response) => response.arrayBuffer()).then(async (a_buffer) => {
      const file_chacksum = await sha(new Uint8Array(a_buffer));
      if (file_chacksum == checksum) {
        const model = {
          model_name,
          path: a_buffer
        };
        if (IS_NODE) {
          (0, import_node_fs.writeFile)(file_path, new Uint8Array(a_buffer), (err) => {
            if (err) {
              reject(err);
            } else {
              resolve(model);
            }
          });
        } else {
          await storeFileInCache(model_name, new Blob([a_buffer], { type: "application/octet-stream" }));
          resolve(model);
        }
      }
    }).catch((err) => reject(err));
  });
}
async function restoreFileFromCache(model_name) {
  const modelCache = await caches.open("models");
  const response = await modelCache.match(model_name);
  if (!response) {
    throw new Error(`${model_name} not found in cache.`);
  }
  const file = await response.arrayBuffer();
  tsLog(`${model_name} found in cache.`);
  return file;
}
async function storeFileInCache(model_name, blob) {
  try {
    const modelCache = await caches.open("models");
    await modelCache.put(model_name, new Response(blob));
    tsLog(`${model_name} cached`);
  } catch (err) {
    throw new Error(err);
  }
}
function drawProgressBar(progress) {
  const barWidth = 30;
  const filledWidth = Math.floor(progress / 100 * barWidth);
  const emptyWidth = barWidth - filledWidth;
  const progressBar = "\u2588".repeat(filledWidth) + "\u2592".repeat(emptyWidth);
  return `[${progressBar}] ${progress}%`;
}
function sha(content) {
  if (IS_NODE) {
    return (0, import_node_crypto.createHash)("sha256").update(content).digest("hex");
  } else {
    return hash(content);
  }
}
function sleep(m) {
  if (IS_BROWSER) {
    return new Promise((resolve) => setTimeout(resolve, m));
  }
}
function tsLog(str, browser_only = false) {
  if (IS_BROWSER) {
    const payloadevt = new CustomEvent("status", { detail: str });
    window.dispatchEvent(payloadevt);
  }
  if (IS_NODE && browser_only === false && VERBOSE) {
    console.log(str);
  }
}
async function hash(content) {
  const hashBuffer = await crypto.subtle.digest("SHA-256", content);
  const hashArray = Array.from(new Uint8Array(hashBuffer));
  const hashHex = hashArray.map((bytes) => bytes.toString(16).padStart(2, "0")).join("");
  return hashHex;
}
// Annotate the CommonJS export names for ESM import in node:
0 && (module.exports = {
  TrustMark
});