Spaces:
Sleeping
Sleeping
File size: 4,628 Bytes
7b8a66e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
import torch.nn as nn
class SketchKeras(nn.Module):
def __init__(self):
super(SketchKeras, self).__init__()
self.downblock_1 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(1, 32, kernel_size=3, stride=1),
nn.BatchNorm2d(32, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.downblock_2 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.BatchNorm2d(64, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.BatchNorm2d(64, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.downblock_3 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 128, kernel_size=4, stride=2),
nn.BatchNorm2d(128, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, kernel_size=3, stride=1),
nn.BatchNorm2d(128, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.downblock_4 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 256, kernel_size=4, stride=2),
nn.BatchNorm2d(256, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, kernel_size=3, stride=1),
nn.BatchNorm2d(256, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.downblock_5 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 512, kernel_size=4, stride=2),
nn.BatchNorm2d(512, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.downblock_6 = nn.Sequential(
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, kernel_size=3, stride=1),
nn.BatchNorm2d(512, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.upblock_1 = nn.Sequential(
nn.Upsample((64, 64)),
nn.ReflectionPad2d((1, 2, 1, 2)),
nn.Conv2d(1024, 512, kernel_size=4, stride=1),
nn.BatchNorm2d(512, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 256, kernel_size=3, stride=1),
nn.BatchNorm2d(256, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.upblock_2 = nn.Sequential(
nn.Upsample((128, 128)),
nn.ReflectionPad2d((1, 2, 1, 2)),
nn.Conv2d(512, 256, kernel_size=4, stride=1),
nn.BatchNorm2d(256, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 128, kernel_size=3, stride=1),
nn.BatchNorm2d(128, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.upblock_3 = nn.Sequential(
nn.Upsample((256, 256)),
nn.ReflectionPad2d((1, 2, 1, 2)),
nn.Conv2d(256, 128, kernel_size=4, stride=1),
nn.BatchNorm2d(128, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 64, kernel_size=3, stride=1),
nn.BatchNorm2d(64, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.upblock_4 = nn.Sequential(
nn.Upsample((512, 512)),
nn.ReflectionPad2d((1, 2, 1, 2)),
nn.Conv2d(128, 64, kernel_size=4, stride=1),
nn.BatchNorm2d(64, eps=1e-3, momentum=0),
nn.ReLU(),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 32, kernel_size=3, stride=1),
nn.BatchNorm2d(32, eps=1e-3, momentum=0),
nn.ReLU(),
)
self.last_pad = nn.ReflectionPad2d((1, 1, 1, 1))
self.last_conv = nn.Conv2d(64, 1, kernel_size=3, stride=1)
def forward(self, x):
d1 = self.downblock_1(x)
d2 = self.downblock_2(d1)
d3 = self.downblock_3(d2)
d4 = self.downblock_4(d3)
d5 = self.downblock_5(d4)
d6 = self.downblock_6(d5)
u1 = torch.cat((d5, d6), dim=1)
u1 = self.upblock_1(u1)
u2 = torch.cat((d4, u1), dim=1)
u2 = self.upblock_2(u2)
u3 = torch.cat((d3, u2), dim=1)
u3 = self.upblock_3(u3)
u4 = torch.cat((d2, u3), dim=1)
u4 = self.upblock_4(u4)
u5 = torch.cat((d1, u4), dim=1)
out = self.last_conv(self.last_pad(u5))
return out
|