# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat import os import numpy as np import torch from PIL import Image from torch.utils.data import DataLoader, Dataset from torchvision import transforms from random import choice class ToTensor(object): def __init__(self): self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) #self.normalize = lambda x : x def __call__(self, sample): image, depth = sample['image'], sample['depth'] image = self.to_tensor(image) image = self.normalize(image) depth = self.to_tensor(depth) return {'image': image, 'depth': depth, 'dataset': "places365"} def to_tensor(self, pic): if isinstance(pic, np.ndarray): img = torch.from_numpy(pic.transpose((2, 0, 1))) return img # # handle PIL Image if pic.mode == 'I': img = torch.from_numpy(np.array(pic, np.int32, copy=False)) elif pic.mode == 'I;16': img = torch.from_numpy(np.array(pic, np.int16, copy=False)) else: img = torch.ByteTensor( torch.ByteStorage.from_buffer(pic.tobytes())) # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK if pic.mode == 'YCbCr': nchannel = 3 elif pic.mode == 'I;16': nchannel = 1 else: nchannel = len(pic.mode) img = img.view(pic.size[1], pic.size[0], nchannel) img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): return img.float() else: return img class Places365(Dataset): def __init__(self, data_dir_root, depth_dir_root, depth_masks_dir_root, randomize_masks=True, debug_mode=False): import glob import os import itertools categories = os.listdir(os.path.join(data_dir_root)) if debug_mode: categories = categories[:2] self.image_files = list(itertools.chain(*[glob.glob(os.path.join(data_dir_root, c, "*.jpg")) for c in categories])) self.depth_files = [os.path.join(depth_dir_root, os.path.join(*r.split("/")[-2:])).replace("jpg", "npy") for r in self.image_files] self.depth_masks_files = [os.path.join(depth_masks_dir_root, os.path.join(*r.split("/")[-2:])).replace("jpg", "npy") for r in self.image_files] self.randomize_masks = randomize_masks self.transform = ToTensor() def __getitem__(self, idx): image_path = self.image_files[idx] depth_path = self.depth_files[idx] if not self.randomize_masks: depth_masks_path = self.depth_masks_files[idx] else: depth_masks_path = choice(self.depth_masks_files) image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0 depth = np.load(depth_path) depth_mask = 1 - np.load(depth_masks_path) return image, depth[..., np.newaxis], depth_mask[..., np.newaxis], image_path, depth_path, depth_masks_path def __len__(self): return len(self.image_files) def get_places365_loader(data_dir_root, depth_dir_root, depth_masks_dir_root, batch_size=1, **kwargs): dataset = Places365(data_dir_root, depth_dir_root, depth_masks_dir_root) return DataLoader(dataset, batch_size, **kwargs)