patrickbdevaney commited on
Commit
af0d510
·
verified ·
1 Parent(s): 83e07dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -14,8 +14,7 @@ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokeniz
14
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
15
  import gradio as gr
16
  from accelerate import Accelerator
17
- from huggingface_hub import spaces
18
-
19
 
20
  # Instantiate the Accelerator
21
  accelerator = Accelerator()
@@ -61,7 +60,7 @@ os.makedirs(output_dir, exist_ok=True)
61
 
62
  # Function to generate a detailed visual description prompt
63
  def generate_description_prompt(subject, user_prompt, text_generator):
64
- prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 50 words of {user_prompt} different from {subject}. "
65
  try:
66
  generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
67
  generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
@@ -131,6 +130,8 @@ def generate_and_store_descriptions(user_prompt, batch_size=100, max_iterations=
131
  if iteration_count % 3 == 0:
132
  parsed_descriptions = parse_descriptions(clean_description)
133
  parsed_descriptions_queue.extend(parsed_descriptions)
 
 
134
 
135
  iteration_count += 1
136
 
 
14
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
15
  import gradio as gr
16
  from accelerate import Accelerator
17
+ from huggingface_hub import spaces # Ensure this import is correct
 
18
 
19
  # Instantiate the Accelerator
20
  accelerator = Accelerator()
 
60
 
61
  # Function to generate a detailed visual description prompt
62
  def generate_description_prompt(subject, user_prompt, text_generator):
63
+ prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
64
  try:
65
  generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
66
  generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
 
130
  if iteration_count % 3 == 0:
131
  parsed_descriptions = parse_descriptions(clean_description)
132
  parsed_descriptions_queue.extend(parsed_descriptions)
133
+ # Return the parsed descriptions to update the Gradio UI
134
+ return list(parsed_descriptions_queue)
135
 
136
  iteration_count += 1
137