Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,8 +14,7 @@ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokeniz
|
|
14 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
15 |
import gradio as gr
|
16 |
from accelerate import Accelerator
|
17 |
-
from huggingface_hub import spaces
|
18 |
-
|
19 |
|
20 |
# Instantiate the Accelerator
|
21 |
accelerator = Accelerator()
|
@@ -61,7 +60,7 @@ os.makedirs(output_dir, exist_ok=True)
|
|
61 |
|
62 |
# Function to generate a detailed visual description prompt
|
63 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
64 |
-
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than
|
65 |
try:
|
66 |
generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
|
67 |
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
@@ -131,6 +130,8 @@ def generate_and_store_descriptions(user_prompt, batch_size=100, max_iterations=
|
|
131 |
if iteration_count % 3 == 0:
|
132 |
parsed_descriptions = parse_descriptions(clean_description)
|
133 |
parsed_descriptions_queue.extend(parsed_descriptions)
|
|
|
|
|
134 |
|
135 |
iteration_count += 1
|
136 |
|
|
|
14 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
15 |
import gradio as gr
|
16 |
from accelerate import Accelerator
|
17 |
+
from huggingface_hub import spaces # Ensure this import is correct
|
|
|
18 |
|
19 |
# Instantiate the Accelerator
|
20 |
accelerator = Accelerator()
|
|
|
60 |
|
61 |
# Function to generate a detailed visual description prompt
|
62 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
63 |
+
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
|
64 |
try:
|
65 |
generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
|
66 |
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
|
|
130 |
if iteration_count % 3 == 0:
|
131 |
parsed_descriptions = parse_descriptions(clean_description)
|
132 |
parsed_descriptions_queue.extend(parsed_descriptions)
|
133 |
+
# Return the parsed descriptions to update the Gradio UI
|
134 |
+
return list(parsed_descriptions_queue)
|
135 |
|
136 |
iteration_count += 1
|
137 |
|