|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from text_analyzer import TextAnalyzer |
|
import json |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
self.analyzer = TextAnalyzer() |
|
|
|
def __call__(self, text: str) -> str: |
|
print(f"Agent received text (first 50 chars): {text[:50]}...") |
|
try: |
|
resultado = self.analyzer(text) |
|
|
|
|
|
if resultado.get("tipo") == "historia_usuario": |
|
return self._format_user_story_response(resultado) |
|
elif resultado.get("tipo") == "pregunta_general": |
|
return self._format_general_question_response(resultado) |
|
else: |
|
return f"Error: {resultado.get('error', 'Tipo de texto no reconocido')}" |
|
except Exception as e: |
|
error_msg = f"Error analizando el texto: {str(e)}" |
|
print(error_msg) |
|
return error_msg |
|
|
|
def _format_user_story_response(self, resultado: dict) -> str: |
|
"""Formatea la respuesta para una historia de usuario.""" |
|
respuesta = [] |
|
if resultado["tiene_ambiguedad"]: |
|
respuesta.append("Se encontraron las siguientes ambigüedades:") |
|
|
|
if resultado["ambiguedad_lexica"]: |
|
respuesta.append("\nAmbigüedades léxicas:") |
|
for amb in resultado["ambiguedad_lexica"]: |
|
respuesta.append(f"- {amb}") |
|
|
|
if resultado["ambiguedad_sintactica"]: |
|
respuesta.append("\nAmbigüedades sintácticas:") |
|
for amb in resultado["ambiguedad_sintactica"]: |
|
respuesta.append(f"- {amb}") |
|
|
|
respuesta.append(f"\nScore de ambigüedad: {resultado['score_ambiguedad']}") |
|
respuesta.append("\nSugerencias de mejora:") |
|
for sug in resultado["sugerencias"]: |
|
respuesta.append(f"- {sug}") |
|
else: |
|
respuesta.append("No se encontraron ambigüedades en la historia de usuario.") |
|
respuesta.append(f"Score de ambigüedad: {resultado['score_ambiguedad']}") |
|
|
|
return "\n".join(respuesta) |
|
|
|
def _format_general_question_response(self, resultado: dict) -> str: |
|
"""Formatea la respuesta para una pregunta general.""" |
|
analisis = resultado["analisis"] |
|
respuesta = [] |
|
|
|
respuesta.append("📝 Análisis de la pregunta:") |
|
if analisis["is_question"]: |
|
respuesta.append(f"• Tipo de pregunta: {analisis['question_type'] or 'No identificado'}") |
|
|
|
if analisis["entities"]: |
|
respuesta.append("\n🏷️ Entidades identificadas:") |
|
for ent, label in analisis["entities"]: |
|
respuesta.append(f"• {ent} ({label})") |
|
|
|
if analisis["key_phrases"]: |
|
respuesta.append("\n🔑 Frases clave identificadas:") |
|
for phrase in analisis["key_phrases"]: |
|
respuesta.append(f"• {phrase}") |
|
|
|
if resultado["sugerencias"]: |
|
respuesta.append("\n💡 Sugerencias:") |
|
for sug in resultado["sugerencias"]: |
|
respuesta.append(f"• {sug}") |
|
|
|
return "\n".join(respuesta) |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
classifier = TextAnalyzer() |
|
|
|
def analyze_text(text: str) -> str: |
|
"""Analiza un texto y determina automáticamente si es una historia de usuario o una pregunta general.""" |
|
if not text.strip(): |
|
return "Por favor, ingrese un texto para analizar." |
|
|
|
|
|
result = classifier(text) |
|
|
|
|
|
output = [] |
|
output.append(f"📝 Texto analizado:\n{text}\n") |
|
|
|
if result.get("tipo") == "historia_usuario": |
|
output.append("📋 Tipo: Historia de Usuario") |
|
output.append(f"🎯 Score de ambigüedad: {result['score_ambiguedad']}") |
|
|
|
if result['ambiguedad_lexica']: |
|
output.append("\n📚 Ambigüedades léxicas encontradas:") |
|
for amb in result['ambiguedad_lexica']: |
|
output.append(f"• {amb}") |
|
|
|
if result['ambiguedad_sintactica']: |
|
output.append("\n🔍 Ambigüedades sintácticas encontradas:") |
|
for amb in result['ambiguedad_sintactica']: |
|
output.append(f"• {amb}") |
|
|
|
if result['sugerencias']: |
|
output.append("\n💡 Sugerencias de mejora:") |
|
for sug in result['sugerencias']: |
|
output.append(f"• {sug}") |
|
|
|
elif result.get("tipo") == "pregunta_general": |
|
output.append("📋 Tipo: Pregunta General") |
|
analisis = result['analisis'] |
|
|
|
if analisis['is_question']: |
|
output.append(f"❓ Tipo de pregunta: {analisis['question_type'] or 'No identificado'}") |
|
|
|
if analisis['entities']: |
|
output.append("\n🏷️ Entidades identificadas:") |
|
for ent, label in analisis['entities']: |
|
output.append(f"• {ent} ({label})") |
|
|
|
if analisis['key_phrases']: |
|
output.append("\n🔑 Frases clave:") |
|
for phrase in analisis['key_phrases']: |
|
output.append(f"• {phrase}") |
|
|
|
output.append("\n💡 Sugerencias:") |
|
for sug in result['sugerencias']: |
|
output.append(f"• {sug}") |
|
|
|
else: |
|
output.append("❌ Error: No se pudo determinar el tipo de texto") |
|
|
|
return "\n".join(output) |
|
|
|
def analyze_multiple_texts(texts: str) -> str: |
|
"""Analiza múltiples textos separados por líneas.""" |
|
if not texts.strip(): |
|
return "Por favor, ingrese al menos un texto para analizar." |
|
|
|
texts_list = [t.strip() for t in texts.split('\n') if t.strip()] |
|
all_results = [] |
|
|
|
for text in texts_list: |
|
result = classifier(text) |
|
result["texto_original"] = text |
|
all_results.append(result) |
|
|
|
return json.dumps(all_results, indent=2, ensure_ascii=False) |
|
|
|
|
|
with gr.Blocks(title="Analizador de Textos") as demo: |
|
gr.Markdown(""" |
|
# 🔍 Analizador de Textos |
|
|
|
Esta herramienta analiza dos tipos de texto: |
|
1. **Historias de Usuario**: Detecta ambigüedades léxicas y sintácticas |
|
2. **Preguntas Generales**: Analiza estructura y contexto |
|
|
|
## 📝 Instrucciones: |
|
1. Ingrese su texto en el campo correspondiente |
|
2. El sistema detectará automáticamente el tipo de texto |
|
3. Revise el análisis detallado y las sugerencias |
|
""") |
|
|
|
with gr.Tab("Análisis Individual"): |
|
input_text = gr.Textbox( |
|
label="Texto a Analizar", |
|
placeholder="Ingrese una historia de usuario o una pregunta general...", |
|
lines=3 |
|
) |
|
analyze_btn = gr.Button("Analizar") |
|
output = gr.Textbox( |
|
label="Resultados del Análisis", |
|
lines=10 |
|
) |
|
analyze_btn.click( |
|
analyze_text, |
|
inputs=[input_text], |
|
outputs=[output] |
|
) |
|
|
|
with gr.Tab("Análisis Múltiple"): |
|
input_texts = gr.Textbox( |
|
label="Textos a Analizar (uno por línea)", |
|
placeholder="Como usuario quiero...\n¿Cuál es el proceso para...?\n", |
|
lines=5 |
|
) |
|
analyze_multi_btn = gr.Button("Analizar Todos") |
|
output_json = gr.JSON(label="Resultados del Análisis") |
|
analyze_multi_btn.click( |
|
analyze_multiple_texts, |
|
inputs=[input_texts], |
|
outputs=[output_json] |
|
) |
|
|
|
gr.Markdown(""" |
|
## 🚀 Ejemplos |
|
|
|
### Historias de Usuario: |
|
- Como usuario quiero un sistema rápido y eficiente para gestionar mis tareas |
|
- El sistema debe permitir exportar varios tipos de archivos |
|
- Como administrador necesito acceder fácilmente a los reportes |
|
|
|
### Preguntas Generales: |
|
- ¿Cuál es el proceso para recuperar una contraseña olvidada? |
|
- ¿Cómo puedo generar un reporte mensual de ventas? |
|
- ¿Dónde encuentro la documentación del API? |
|
""") |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |