patopla's picture
Update app.py
10d67ec verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from text_analyzer import TextAnalyzer
import json
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.analyzer = TextAnalyzer()
def __call__(self, text: str) -> str:
print(f"Agent received text (first 50 chars): {text[:50]}...")
try:
resultado = self.analyzer(text)
# Formatear la respuesta según el tipo de texto
if resultado.get("tipo") == "historia_usuario":
return self._format_user_story_response(resultado)
elif resultado.get("tipo") == "pregunta_general":
return self._format_general_question_response(resultado)
else:
return f"Error: {resultado.get('error', 'Tipo de texto no reconocido')}"
except Exception as e:
error_msg = f"Error analizando el texto: {str(e)}"
print(error_msg)
return error_msg
def _format_user_story_response(self, resultado: dict) -> str:
"""Formatea la respuesta para una historia de usuario."""
respuesta = []
if resultado["tiene_ambiguedad"]:
respuesta.append("Se encontraron las siguientes ambigüedades:")
if resultado["ambiguedad_lexica"]:
respuesta.append("\nAmbigüedades léxicas:")
for amb in resultado["ambiguedad_lexica"]:
respuesta.append(f"- {amb}")
if resultado["ambiguedad_sintactica"]:
respuesta.append("\nAmbigüedades sintácticas:")
for amb in resultado["ambiguedad_sintactica"]:
respuesta.append(f"- {amb}")
respuesta.append(f"\nScore de ambigüedad: {resultado['score_ambiguedad']}")
respuesta.append("\nSugerencias de mejora:")
for sug in resultado["sugerencias"]:
respuesta.append(f"- {sug}")
else:
respuesta.append("No se encontraron ambigüedades en la historia de usuario.")
respuesta.append(f"Score de ambigüedad: {resultado['score_ambiguedad']}")
return "\n".join(respuesta)
def _format_general_question_response(self, resultado: dict) -> str:
"""Formatea la respuesta para una pregunta general."""
analisis = resultado["analisis"]
respuesta = []
respuesta.append("📝 Análisis de la pregunta:")
if analisis["is_question"]:
respuesta.append(f"• Tipo de pregunta: {analisis['question_type'] or 'No identificado'}")
if analisis["entities"]:
respuesta.append("\n🏷️ Entidades identificadas:")
for ent, label in analisis["entities"]:
respuesta.append(f"• {ent} ({label})")
if analisis["key_phrases"]:
respuesta.append("\n🔑 Frases clave identificadas:")
for phrase in analisis["key_phrases"]:
respuesta.append(f"• {phrase}")
if resultado["sugerencias"]:
respuesta.append("\n💡 Sugerencias:")
for sug in resultado["sugerencias"]:
respuesta.append(f"• {sug}")
return "\n".join(respuesta)
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Inicializar el clasificador
classifier = TextAnalyzer()
def analyze_text(text: str) -> str:
"""Analiza un texto y determina automáticamente si es una historia de usuario o una pregunta general."""
if not text.strip():
return "Por favor, ingrese un texto para analizar."
# Analizar el texto
result = classifier(text)
# Formatear resultados según el tipo
output = []
output.append(f"📝 Texto analizado:\n{text}\n")
if result.get("tipo") == "historia_usuario":
output.append("📋 Tipo: Historia de Usuario")
output.append(f"🎯 Score de ambigüedad: {result['score_ambiguedad']}")
if result['ambiguedad_lexica']:
output.append("\n📚 Ambigüedades léxicas encontradas:")
for amb in result['ambiguedad_lexica']:
output.append(f"• {amb}")
if result['ambiguedad_sintactica']:
output.append("\n🔍 Ambigüedades sintácticas encontradas:")
for amb in result['ambiguedad_sintactica']:
output.append(f"• {amb}")
if result['sugerencias']:
output.append("\n💡 Sugerencias de mejora:")
for sug in result['sugerencias']:
output.append(f"• {sug}")
elif result.get("tipo") == "pregunta_general":
output.append("📋 Tipo: Pregunta General")
analisis = result['analisis']
if analisis['is_question']:
output.append(f"❓ Tipo de pregunta: {analisis['question_type'] or 'No identificado'}")
if analisis['entities']:
output.append("\n🏷️ Entidades identificadas:")
for ent, label in analisis['entities']:
output.append(f"• {ent} ({label})")
if analisis['key_phrases']:
output.append("\n🔑 Frases clave:")
for phrase in analisis['key_phrases']:
output.append(f"• {phrase}")
output.append("\n💡 Sugerencias:")
for sug in result['sugerencias']:
output.append(f"• {sug}")
else:
output.append("❌ Error: No se pudo determinar el tipo de texto")
return "\n".join(output)
def analyze_multiple_texts(texts: str) -> str:
"""Analiza múltiples textos separados por líneas."""
if not texts.strip():
return "Por favor, ingrese al menos un texto para analizar."
texts_list = [t.strip() for t in texts.split('\n') if t.strip()]
all_results = []
for text in texts_list:
result = classifier(text)
result["texto_original"] = text
all_results.append(result)
return json.dumps(all_results, indent=2, ensure_ascii=False)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="Analizador de Textos") as demo:
gr.Markdown("""
# 🔍 Analizador de Textos
Esta herramienta analiza dos tipos de texto:
1. **Historias de Usuario**: Detecta ambigüedades léxicas y sintácticas
2. **Preguntas Generales**: Analiza estructura y contexto
## 📝 Instrucciones:
1. Ingrese su texto en el campo correspondiente
2. El sistema detectará automáticamente el tipo de texto
3. Revise el análisis detallado y las sugerencias
""")
with gr.Tab("Análisis Individual"):
input_text = gr.Textbox(
label="Texto a Analizar",
placeholder="Ingrese una historia de usuario o una pregunta general...",
lines=3
)
analyze_btn = gr.Button("Analizar")
output = gr.Textbox(
label="Resultados del Análisis",
lines=10
)
analyze_btn.click(
analyze_text,
inputs=[input_text],
outputs=[output]
)
with gr.Tab("Análisis Múltiple"):
input_texts = gr.Textbox(
label="Textos a Analizar (uno por línea)",
placeholder="Como usuario quiero...\n¿Cuál es el proceso para...?\n",
lines=5
)
analyze_multi_btn = gr.Button("Analizar Todos")
output_json = gr.JSON(label="Resultados del Análisis")
analyze_multi_btn.click(
analyze_multiple_texts,
inputs=[input_texts],
outputs=[output_json]
)
gr.Markdown("""
## 🚀 Ejemplos
### Historias de Usuario:
- Como usuario quiero un sistema rápido y eficiente para gestionar mis tareas
- El sistema debe permitir exportar varios tipos de archivos
- Como administrador necesito acceder fácilmente a los reportes
### Preguntas Generales:
- ¿Cuál es el proceso para recuperar una contraseña olvidada?
- ¿Cómo puedo generar un reporte mensual de ventas?
- ¿Dónde encuentro la documentación del API?
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)